Giải phương trình: \(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
Giải phương trình nghiệm nguyên: \(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
(x+1)(x-2)(x+6)(x-3)=45x2
<=>(x+1)(x+6)(x-2)(x-3)=45x2
<=>(x2+7x+6)(x2-5x+6)=45x2
Đặt t=x2+7x+6 ta được:
t.(t-12x)=45x2
<=>t2-12xt=45x2
<=>45x2+12xt-t2=0
<=>45x2-3xt+15xt-t2=0
<=>3x.(15x-t)+t.(15x-t)=0
<=>(3x+t)(15x-t)=0
<=>3x=-t hoặc 15x=t
Với 3x=-t =>3x=-x2-7x-6
=>x2+10x+6=0
=>\(x_1=-5+\sqrt{19};x_2=-5-\sqrt{19}\) (loại cả 2 nghiệm) (bài này dài vs lại lớp 9 nên làm tắt chắc cũng dc)
Với 15x=t
=>15x=x2+7x+6
=>x2-8x+6=0
=>\(x_1=4-\sqrt{10};x_2=4+\sqrt{10}\)(loại cả 2 nghiệm)
Vậy PT ko có nghiệm nguyên nào
Giải phương trình nghiệm nguyên: \(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left(x-2\right)\left(x-3\right)=45x^2\)
\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)
\(\Leftrightarrow\left(x^2+x+6+6x\right)\left(x^2+x+6-6x\right)=45x^2\)
\(\Leftrightarrow\left(x^2+x+6\right)^2-36x^2=45x^2\)
\(\Leftrightarrow\left(x^2+x+6\right)^2-81x^2=0\)
\(\Leftrightarrow\left(x^2+10x+6\right)\left(x^2-8x+6\right)=0\)
Giải được các nghiệm là \(\sqrt{19}-5\);\(-\sqrt{19}-5\);\(4+\sqrt{10}\)và \(4-\sqrt{10}\)
\(\Rightarrow\)Phương trình không có nghiệm nguyên.
\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
\(\Rightarrow\left(x^2+6x+x+6\right)\left(x^2-3x-2x+6\right)=45x^2\)
\(\Rightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)
Đề sai rồi bạn ơi
Giải phương trình: \(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
\(pt\Leftrightarrow\left(x^2-8x+6\right)\left(x^2+10x+6\right)=0\)
\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)
\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)
Ta thấy : x = 0 không phải là 1 nghiệm của phương trinh chia cả 2 về cho x2 ta được :
\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}-5\right)=45\)
Đặt \(t=x+\dfrac{6}{x}+1\), ta được :
\(\left(t+6\right)\left(t-6\right)=45\)
\(\Leftrightarrow t^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}t=9\\t=-9\end{matrix}\right.\)
Thay từng t vào r tính.
GIẢI CÁC PHƯƠNG TRÌNH SAU
A) \(\left(6X^2-11X+5\right)\left(18X^2-45X+28\right)=252\)
B) \(\left(X+2\right)^4-4\left(X-3\right)^4=3\left(X^2-X-6\right)^2\)
giải phương trình
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
ĐKXĐ: \(x\notin\left\{-1;-2;-3;-4\right\}\)
Ta có: \(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
\(\Leftrightarrow\dfrac{18}{6\left(x+1\right)\left(x+4\right)}=\dfrac{x^2+5x+4}{6\left(x+1\right)\left(x+4\right)}\)
Suy ra: \(x^2+5x+4=18\)
\(\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow x^2+7x-2x-14=0\)
\(\Leftrightarrow x\left(x+7\right)-2\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-7;2}
ĐKXĐ: $x \neq -1;-2;-3;-4$
$pt⇔\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{1}{6}$
$⇔\dfrac{3}{(x+1)(x+4)}=\dfrac{1}{6}$
$⇔x^2+5x+4=18$
$⇔x^2+5x-14=0$
$⇔(x-2)(x+7)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)(t/m)
Vậy...
Giải phương trình \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\dfrac{-3x^2}{4}\)
PT tương đương
\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)
Xét \(x=0\Rightarrow6.6=0\)(vô lý)
Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương
\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)
Đặt \(x+\dfrac{6}{x}+5=t\)
PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)
\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)
Đến đây bạn thay vào là tìm được nghiệm nhé.
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Giải phương trình: \(\sqrt{\left(x^2+1\right)\left(x+3\right)\left(x^4+5\right)\left(x+7\right)}=\sqrt{\left(x+2\right)\left(x^4+4\right)\left(x+6\right)\left(x^2+8\right)}\)