giải pt : (x2+7x+12)(x2-15x+56)=180
Phân tích đa thức thành nhân tử:
a) (x2-7x+12).(x2-15x+56)-60
b) x4+2000x2+1999x+2000
a) \(\left(x^2-7x+12\right).\left(x^2-15x+56\right)-60\)
\(=\left(x-3\right)\left(x-4\right)\left(x-7\right)\left(x-8\right)-60\)
b) \(x^4+2000x^2+1999x+2000\)
\(=\left(x^2-x+2000\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x-1\right)^2+1999\left(x^2+x+1\right)+1\)
hình như Thành lộn đề rồi đấy ạ, ý mình là phân tích thành nhân tử á
b) \(x^4+2000x^2+1999x+2000\)
\(=x^4-x+2000x^2+2000x+2000\)
\(=x\left(x^3-1\right)+2000\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2000\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x-2000\right)\)
(x^2+7x+12)(x^2-15x+56)=180
giúp mình
1 ) giải và biện luận pt sau :
A (m-1)x2+7x-12=0
B x2−2(m−1)x−(2m+1)=0
2) tìm m để pt x2-2(m+1)x+m2-1=0 có 2 nghiệm phân biệt
\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)
\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)
\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)
(2x+14)\(\sqrt{x+5}\)=x2+15x+38 . Giải pt
ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow\left(x+7\right)^2-2\left(x+7\right)\sqrt{x+5}+x+5-16=0\)
\(\Leftrightarrow\left(x+7-\sqrt{x+5}\right)^2-16=0\)
\(\Leftrightarrow\left(x+7-\sqrt{x+5}-4\right)\left(x+7-\sqrt{x+5}+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=x+3\left(x\ge-3\right)\\\sqrt{x+5}=x+11\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2+6x+9\\x+5=x^2+22x+121\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\x^2+21x+116=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4< -3\left(l\right)\end{matrix}\right.\)
a)(x^2+7x+12)(x^2-15x+56)=180
b) (x-90)(x-35)(x+18)(x+7)=-1080x^2
giải các pt
(3x - 1)(x2 + 2) = (3x - 1)(7x - 10)
`(3x-1)(x^2 +2)=(3x-1)(7x-10)`
`<=> (3x-1)(x^2 +2)-(3x-1)(7x-10)=0`
`<=> (3x-1)(x^2 +2-7x+10)=0`
`<=> (3x-1)(x^2 -7x+12)=0`
`<=> (3x-1)(x^2 -3x-4x+12)=0`
`<=> (3x-1)[x(x-3)-4(x-3)]=0`
`<=> (3x-1)(x-4)(x-3)=0`
\(< =>\left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(x^2-3x\right)-\left(4x-12\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left[x\left(x-3\right)-4\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x-1\right)\left[\left(x-3\right)\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{1}{3};3;4\right\}\)
1)(x-90)(x-35)(x+18)(x+7)=-1080 x^2
2)(6x+1)(2x+6)(4x-3)(3x-2)=56x^2
3)(x^2+7x+12)(x^2-15x+56)=180
Bài 1: Giải các pt sau: 1) x2 + 5x + 6 = 0 2)
x2 - x - 6 = 0
3) (x2 + 1) (x2 + 4x + 4) = 0
4) x3 + x2 + x + 1 = 0
5) x2 - 7x + 6 = 0
6) 2x2 - 3x - 5 = 0
7) x2 + x - 12 = 0
8) 2x3 + 6x2 = x2 + 3x
9) (3x - 1) (x2 + 2) = (3x - 1)(7x - 10)
Bài 2: Cho biểu thức A = (5x - 3y + 1) (7x + 2y -2) a) Tìm x sao cho với y = 2 thì A = 0 b) Tìm y sao cho với x = -2 thì A = 0
Bài 1: Giải các pt sau: 1) x2 + 5x + 6 = 0
2) x2 - x - 6 = 0
3) (x2 + 1) (x2 + 4x + 4) = 0
4) x3 + x2 + x + 1 = 0
5) x2 - 7x + 6 = 0
6) 2x2 - 3x - 5 = 0
7) x2 + x - 12 = 0
8) 2x3 + 6x2 = x2 + 3x
9) (3x - 1) (x2 + 2) = (3x - 1)(7x - 10)
Bài 2: Cho biểu thức A = (5x - 3y + 1) (7x + 2y -2) a) Tìm x sao cho với y = 2 thì A = 0 b) Tìm y sao cho với x = -2 thì A = 0
Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0
=x(x+3)+2(x+3)=(x+2)(x+3)=0
Dễ rồi
2)\(x^2-x-6=0=x^2-3x+2x-6=0\)
=x(x-3)+2(x-3)=0
=(x+2)(x-3)=0
Dễ rồi
3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)
Vì \(x^2+1>0\)
=>\(\left(x+2\right)^2=0\)
Dễ rồi
4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0
=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)
=>x+1=0
=>..................
5)\(x^2-7x+6=x^2-6x-x+6\) =0
=x(x-6)-(x-6)=0
=(x-1)(x-6)=0
=>.....
6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0
=2x(x+1)-5(x+1)=0
=(2x-5)(x+1)=0
7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0
Dễ rồi
Nghỉ đã hôm sau làm mệt