x2 y - x + xy = 6
Giúp mk vs huhu
Cho x, y, z thỏa mãn x+y+z=3. Tìm giá trị lớn nhất của biểu thức B = xy + yz + zx
Cầu xin các bn giúp mk vs. Huhu
Tìm các số nguyên x, biết:
a, l 2x +8 l + l3y + 9x l = 0
b, xy - 7x +3y = 16
c, (x - 7)( xy + 1) = 9
d, lyl +l2x + (+6)l + lxl = 0
huhu giúp mk vs huhu
Phân tích đa thức
a, x\(^2\)-4x+5
b, (x\(^2\)+3x+1)(x\(^2\)+3x+2)-6
Giúp e vs e đang cần gấp ạ
\(a,Đề.sai\\ b,=\left(x^2+3x+1\right)^2+\left(x^2+3x+1\right)-6\\ =\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
giải hệ pt: x3+x2+y2-x2y-xy-y=0
\(\sqrt{x}+\sqrt{y-1}=\sqrt{2y-3x-4}\)
nhờ mọi ngưòi giúp mk vs ạ
chúc mọi người một năm mới thành công trong cuộc sống
Bạn nào giúp mik bài này đi ạ...Huhu...!!!
\(\left\{{}\begin{matrix}x+y=\sqrt{x+3y}\\x2+y^2+xy=3\end{matrix}\right.\)
HPT<=> \(\left\{{}\begin{matrix}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2+2xy+y^2=x+3y\\x^2+y^2+xy=3\end{matrix}\right.\)
<=> \(xy+3=x+3y\)
<=> \(x\left(1-y\right)-3\left(1-y\right)=0\)
<=> \(\left(x-3\right)\left(y-1\right)=0\)
<=> \(\left[{}\begin{matrix}x=3\\y=1\end{matrix}\right.\) => \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y^2+3y+6=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=1\\x^2+x-2=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=1\\\left(x+1\right)\left(x-2\right)=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=1\\x=1;-2\end{matrix}\right.\) (TM)
Vậy cặp ( x;y) cần tìm là ( 1;1) , ( -2;1)
Thu gọn biểu thức
a, A= x (x2-x+1)+1/2x2(2-2x)
b, B= 3x (x-2)-x (1+3x)
c, C = x (x2+xy+y2)-y (x2+xy+y2)
d, D=3x (x2-2x-3)-x2(3x-2)+5(x2-x)
GIÚP MK VỚI MK LIKE NHA haha
1 Tìm n thuộc N để a=n^4-3n^2+1 là số nguyên tố
2. Tìm nghiêm nguyên của phương trình : xy/z+uz/x+xz/y=3
Ai giúp mk vs huhu
1.\(a=n^4-3n^2+1\)
\(=n^4+n^3-n^2-n^3-n^2+n-n^2-n+1\)
\(=n^2\left(n^2+n-1\right)-n\left(n^2+n-1\right)-\left(n^2+n-1\right)\)
\(=\left(n^2+n-1\right)\left(n^2-n-1\right)\)
Để a là số nguyên tố thì 1 trong hai số là 1 và số chính phương nên:
\(\left\{{}\begin{matrix}n^2+n-1=1\\n^2-n-1=a\end{matrix}\right.\)(1) hoặc \(\left\{{}\begin{matrix}n^2-n-1=1\\n^2+n-1=a\end{matrix}\right.\)(2)
Giải ra ta được:
-TH (1):\(\left\{{}\begin{matrix}\left(n-1\right)\left(n+2\right)=0\\n^2-n-1=a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=1\left(tm\right)\\n=-2\left(l\right)\end{matrix}\right.\) và \(a=n^2-n-1\)
\(\Rightarrow a=1-1-1=-1\left(l\right)\)
-TH (2):\(\left\{{}\begin{matrix}\left(n-2\right)\left(n+1\right)=0\\n^2+n-1=a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=2\left(tm\right)\\n=-1\left(l\right)\end{matrix}\right.\) và \(a=n^2+n-1\)
\(\Rightarrow a=2^2+2-1=4+2-1=5\)
Vậy với n=2 thì a=5 là số nguyên tố thỏa mãn yêu cầu
*không chắc lắm nha do không rành phần này lắm
cho x/(y+z) + y/(z+x) + z(x+y)=1. tính GTBT x^2/(y+z) + y^2/(z+x) + z^2/(x+y).
huhu các bn giúp mk vs nek
\(\frac{x}{y+z}=1-\left(\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(=1-\frac{xy+y^2+xz+z^2}{\left(x+z\right)\left(x+y\right)}\) \(=\frac{x^2+xy+xz+yz-xy-y^2-xz-z^2}{\left(x+z\right)\left(x+y\right)}\)
\(=\frac{x^2+yz-y^2-z^2}{\left(x+y\right)\left(x+z\right)}=\frac{\left(x^2+yz-y^2-z^2\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
\(=\frac{x^2y+x^2z-y^3-z^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(\Rightarrow\frac{x^2}{y+z}=\frac{x^3y+x^3z-xy^3-xz^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
+ CM tương tự rồi công vế theo vế ta đc
BT = 0
ính giá trị của biểu thức sau:
H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18
Giá trị của biểu thức H = ???
giúp mình vs cần gấp ....mình sẽ hậu tạ