cho S= 1 - 2 + 22 - 23 - 24 -...-22017 -22018.Tính S
Bài Toàn 16 : Tính tổng
a) S = 1 + 2 + 22 + 23 + … + 22017
b) S = 3 + 32 + 33 + ….+ 32017
c) S = 4 + 42 + 43 + … + 42017
d) S = 5 + 52 + 53 + … + 52017
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
1. Tính ( bằng 2 cách ) :
a ) S= 1+2+3+...+2018
b ) S = 1+3+5+.....+2019
2. Tính ( bằng 2 cách )
a ) S= 2+22 + 23 + 24 + ....+ 22018
b ) S = 1+4+7+10+.....+2020
c) B= 1+6+11+16+....+2021
d ) A = 3+32 + 33 +....+32005
e) E = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\)
Cho A=1+2+22+23+ ... +22018 , B=22019. Tính B - A
Ai làm đúng cho tick
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^3+2^4+...+2^{2019}\)
\(A=2A-A=1-2^{2019}\)
\(B-A=2^{2019}-\left(1-2^{2019}\right)\)
\(B-A=2^{2019}-1+2^{2019}\)
\(B-A=1\)
`#3107`
\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)
\(A=2^{2019}-1\)
Vậy, \(A=2^{2019}-1\)
Ta có:
\(B-A=2^{2019}-2^{2019}+1=1\)
Vậy, `B - A = 1.`
A = 1 + 2 + 22 + 23 + ... + 22018
2.A = 2 + 22 + 23 + 24 + ... + 22019
A = 22019 - 1
B - A = 22019 - (22019 - 1) = 1
22018-22017
22018-22017
Giải:
Ta có: 22018 = 22017 . 2
=> 22018 - 22017 = 22017 . 2 - 22017 = 2
B = 22018 - 22017 - 22016 - 22015 - 22014
\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)
\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)
\(=>2B+B=2^{2019}-2^{2014}\)
\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)
Tính giá trị biểu thức (Thu gọn các tổng sau):
A = 2 + 22 + 23 + … + 22017
Ta có:
A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
Vậy A = 22018 – 2
Tính giá trị biểu thức (Thu gọn các tổng sau):
A = 2 + 22 + 23 + … + 22017
Ta có: A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
A = 22018 – 2
Vậy A = 22018 – 2
Tìm dư của phép chia số A = 22021 + 22022 chia cho B = 1 + 2 + 22 + 23 +....+22016 + 22017
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
A = 2 + 22 + 23 + … + 22017
Sửa đề: A=2+2^2+2^3+...+2^2017
=>2*A=2^2+2^3+2^4+...+2^2018
=>2A-A=2^2018-2
=>A=2^2018-2