Tìm k để hệ phương trình có nghiệm :
kn + y =1
-x +y = 1
giải giúp em với mọi người nha!
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
tìm m để hệ phương trình 2 ẩn x,y là {nx+y=m có nghiệm với mọi n { x+ 2y=-1
Cho hệ phương trình
\(\begin{cases} (k - 1)x + y = 3k - 4\\ x + (k - 1)y = k - 1 \end{cases}\)
Tìm k ϵ Z để hệ phương trình có nghiệm (x; y) sao cho x, y ϵ Z
cho hệ phương trình x + y = 3k - 2
2x - y = 5 với k là tham số
giải hệ phương trình khi k = 1
tìm k để hệ phương trình có nghiệm ( x ; y) sao cho x^2 - y - 5/ y + 1 = 4
Thay k=1 và HPT ta có:
\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (2;-1)
b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)
\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)
Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)
Thay vào biểu thức đã cho ở đề bài ta có :
\(x^2-y-\dfrac{5}{y}+1=4\)
⇔\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)
⇔\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)
Sau một hồi bấm máy tính Casio thì ra k=2
Vậy k=2 thì Thỏa mãn yêu cầu đề bài
Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@
cho hệ phương trình \(\left\{{}\begin{matrix}x+y=2\\\left(m+1\right)x+my=7\end{matrix}\right.\)
a) chứng minh rằng: với mọi m thì hệ phương trình luôn có nghiệm x,y thỏa mãn x.y =< 1
b) tìm m là số nguyên để hệ phương trình có nghiệm thỏa mãn x.y>0
Lời giải:
a.
Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$
$\Leftrightarrow x+2m=7$
$\Leftrightarrow x=7-2m$
$y=2-x=2-(7-2m)=2m-5$
Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$
Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$
Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:
$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$
Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$
b.
$xy>0$
$\Leftrightarrow (7-2m)(2m-5)>0$
$\Leftrightarrow 7> 2m> 5$
$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$
Do $m$ nguyên nên $m=3$
Thử lại thấy đúng.
Cho hệ phương trình
\(\left\{{}\begin{matrix}mx+x=1\\2x-y=m\end{matrix}\right.\)
a) Giải hệ phương trình với m= -1
b) Tìm m để hệ phương trình có nghiệm duy nhất với mọi m x>0
y \(\le\) 0
a, Thay \(m=-1\) vào
\(=>\left\{{}\begin{matrix}-x+y=1\\2x-y=-1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
b, Để hệ pt có nghiệm duy nhất :
\(\dfrac{m}{2}\ne\dfrac{1}{-1}\\ =>\dfrac{m}{2}\ne-1\\ =>m\ne-2\)
Cho hệ Phương trình x+ay=1 và -ax+y=a
a)Chứng minh rằng hệ luôn luôn có no duy nhất với mọi a
b)Tìm a để hệ có nghiệm (x,y) sao cho x<1 ; y<1
Lời giải:
a) $x+ay=1\Rightarrow x=1-ay$. Thay vào PT $(2)$ có:
$-a(1-ay)+y=a$
$\Leftrightarrow y(1+a^2)=2a(*)$
Vì $1+a^2\neq 0$ với mọi $a\in\mathbb{R}$ nên PT $(*)$ có nghiệm $y=\frac{2a}{a^2+1}$ duy nhất.
Kéo theo HPT ban đầu có nghiệm $(x,y)$ duy nhất với mọi $a$
b) $y=\frac{2a}{a^2+1}$ nên $x=1-ay=1-\frac{2a^2}{a^2+1}=\frac{1-a^2}{a^2+1}$
Để \(x< 1; y< 1\Leftrightarrow \left\{\begin{matrix} \frac{2a}{a^2+1}< 1\\ \frac{1-a^2}{a^2+1}< 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a< a^2+1\\ 1-a^2< a^2+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2+1-2a>0\\ 2a^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (a-1)^2>0\\ a^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a\neq 1\\ a\neq 0\end{matrix}\right.\)
Cho hệ phương trình gồm 2 phương trình : (m+1)x+3y=5 và 5x-2y=3 với m là tham số <=> Không biết cách viết hpt thông cảm :((
a) Với giá trị nào của m thì hệ phương trình đã cho vô nghiệm,có nghiệm duy nhất
b)Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y=5
Mng giúp với :3
Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\) (m là tham số)
a) Giải hệ phương trình với m = 3
b) Tìm m để hệ có nghiệm x= -1, y=3
c) Chứng tỏ hệ phương trình có nghiệm duy nhất với mọi giá trị của tham số m
(mink đag cần gấp)
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên