tìm x,biết:b)-25+(-16+x)=0
c)-51-(17-x)=0
Tìm x:
a) 5x(x-2)+(2-x)=0
b) x(2x-5)-10x+25=0
c) \(\dfrac{25}{16}\)-4x2+4x-1=0
d)x4+2x2-8=0
a) \(\text{5x(x-2)+(2-x)=0}\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\text{x(2x-5)-10x+25=0}\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\\ \Rightarrow\left(x-5\right)\left(2x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=2,5\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow\dfrac{9}{16}-4x^2+4x=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow-4x^2-\dfrac{1}{2}x+\dfrac{9}{2}x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(-4x^2-\dfrac{1}{2}x\right)+\left(\dfrac{9}{2}x+\dfrac{9}{16}\right)=0\)
\(\Rightarrow-\dfrac{1}{2}x\left(8x+1\right)+\dfrac{9}{16}\left(8x+1\right)=0\)
\(\Rightarrow\left(-\dfrac{1}{2}x+\dfrac{9}{16}\right)\left(8x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}x+\dfrac{9}{16}=0\\8x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=\dfrac{-1}{8}\end{matrix}\right.\)
a) \(5x\left(x-2\right)+\left(2-x\right)=0\)
\(\Rightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(x\left(2x-5\right)-10x+25=0\)
\(\Rightarrow x\left(2x-5\right)-5\left(2x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\2x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{5}{2}\end{matrix}\right.\)
c) \(\dfrac{25}{16}-4x^2+4x-1=0\)
\(\Rightarrow-4x^2+4x+\dfrac{9}{16}=0\)
\(\Rightarrow\left(x-\dfrac{9}{8}\right)\left(x+\dfrac{1}{8}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{9}{8}=0\\x+\dfrac{1}{8}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{8}\\x=-\dfrac{1}{8}\end{matrix}\right.\)
d) \(x^4+2x^2-8=0\)
\(\Rightarrow\left(x^4+2x^2+1\right)-9=0\)
\(\Rightarrow\left(x^2+1\right)^2-3^2=0\)
\(\Rightarrow\left(x^2+1-3\right)\left(x^2+1+3\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\end{matrix}\right.\) \(\Rightarrow x^2=2\) \(\Rightarrow x=\pm\sqrt{2}\)
Tìm x:
a) x2+9x=0
b) (x+4)2-16=0
c) x3-16x=0
d) x2-10x+25=0
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
Tìm x ϵ N biết:b) 35 - 5 (x - 1) = 10 c) 24. (x - 16) = 122 d) (x2 - 10) : 5 = 3
\(35-5\left(x-1\right)=10\\ \Leftrightarrow35-5x+5=10\\ \Rightarrow40-5x=10\)
\(\Rightarrow-5x=10-40\\ \Rightarrow-5x=-30\\ \Rightarrow x=\dfrac{-30}{-5}=6\)
c)
\(24\left(x-16\right)=12^2\)
\(\Rightarrow24x-384=144\\ \Rightarrow24x=144+384\\ \Rightarrow24x=528\\ \Rightarrow x=\dfrac{528}{24}=22\)
d)
\(\left(x^2-10\right)\div5=3\\ \Rightarrow\left(x^2-10\right)=3\times5\\ \Rightarrow x^2-10=15\)
\(\Rightarrow x^2=15+10\\ \Rightarrow x^2=25\\ \Rightarrow x^2=5^2\Rightarrow x=5\)
Ơ, bn ơi @Kenny sai sai ở đâu thì phải.
Tìm x biết:
a, \(\sqrt{x-1}\) = 3 b,\(x^2\) - 64 = 0
c,\(x^2\) + 16 = 25 d,|\(\sqrt{x}-3\)| + 3 = 9
a, ĐKXĐ:\(x\ge1\)
\(\sqrt{x-1}=3\\ \Rightarrow x-1=9\\ \Rightarrow x=10\)
\(b,x^2-64=0\\ \Rightarrow\left(x-8\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\\ c,x^2+16=25\\ \Rightarrow x^2=9\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ d,ĐKXĐ:x\ge0\\ \left|\sqrt{x}-3\right|+3=9\\ \Rightarrow\left|\sqrt{x}-3\right|=6\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-3=-6\\x-3=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(vô.lí\right)\\x=9\left(tm\right)\end{matrix}\right.\)
TÌM X
a) /x-17/=2,3
b) /x+3/4/=0
c)/x+3/4/+1/3=0
a) \(\left|x-17\right|=2,3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-17=2,3\\x-17=-2,3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=19,3\\x=14,7\end{matrix}\right.\)
b) \(\left|x+\dfrac{3}{4}\right|=0\)
\(\Leftrightarrow x+\dfrac{3}{4}=0\Leftrightarrow x=-\dfrac{3}{4}\)
c) \(\left|x+\dfrac{3}{4}\right|+\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=-\dfrac{1}{3}\)( vô lý do \(\left|x+\dfrac{3}{4}\right|\ge0\forall x\))
Vậy \(S=\varnothing\)
Tìm x :
a, (–31) . (x +7)=0 b, (8 – x) . (x + 13) = 0 c,(x2– 25) . (3– x )=0 d, ( x - 3 ) (x2+4) =0 |
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
a, (–31) . (x +7)=0
<=> x +7 = 0
<=> x = -7
Vậy x \(\in\left\{-7\right\}\)
b, (8 – x) . (x + 13) = 0
<=> \(\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\)
Vậy x \(\in\left\{8;-13\right\}\)
c,(x2– 25) . (3– x )=0
<=> (x - 5) (x + 5) (3 - x) = 0
<=> \(\left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\)
Vậy x \(\in\left\{5;-5;3\right\}\)
d, ( x - 3 ) (x2 + 4) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x^2=-4\end{matrix}\right.\)(vô lý)
Vậy x \(\in\left\{3\right\}\)
Tìm x biết :
b) (x − 5) · (x 2 − 16) = 0
c) (−5) · (x − 2015) < 0
d) (3 − x)(x + 6) > 0
\(b,\Leftrightarrow\left(x-5\right)\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow x-2015>0\Leftrightarrow x>2015\\ d,\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-x>0\\x+6>0\end{matrix}\right.\\\left\{{}\begin{matrix}3-x< 0\\x+6< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-6< x< 3\)
b: \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=-4\end{matrix}\right.\)
\(\frac{59-x}{41}+\frac{57-x}{43}+\frac{55-x}{45}+\frac{53-x}{47}+\frac{51-x}{49}=-5\) tìm x
\(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}\) tìm x
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\) tìm x
1. \(\Leftrightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{51-x}{49}+1=-5+5\)
\(\Leftrightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Leftrightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
\(\Leftrightarrow x-100=0\Leftrightarrow x=100\)
2. \(\Leftrightarrow\frac{x-5}{1990}+1+\frac{x-15}{1980}+1+\frac{x-25}{1970}=\frac{x-1990}{5}+1+\frac{x-1980}{15}+1+\frac{x-1970}{25}+1\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}=\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}-\frac{x-1995}{5}-\frac{x-1995}{15}-\frac{x-1995}{25}=0\)
\(\Leftrightarrow\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}-\frac{1}{15}-\frac{1}{25}\right)=0\)
\(\Leftrightarrow x-1995=0\Leftrightarrow x=1995\)
Tìm x biết :
a) (3x³ + x² – 13x + 5) : (x² + 2x – 1) = 10
b) (x⁴ – 2x² – 8) : (x – 2) = 0
c) (x²-4x) : (x²-8x+16) = 0
\(a,\Leftrightarrow\dfrac{3x^3+6x^2-3x-5x^2-10x+5}{x^2+2x-1}=10\\ \Leftrightarrow\dfrac{3x\left(x^2+2x-1\right)-5\left(x^2+2x-1\right)}{x^2+2x-1}=10\\ \Leftrightarrow3x-5=10\Leftrightarrow3x=15\Leftrightarrow x=5\\ b,\Leftrightarrow\left(x^4+2x^2-4x^2-8\right):\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-4\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x^2+2\right)=0\Leftrightarrow x=-2\left(x^2+2>0\right)\\ c,\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-4\right)^2}=0\Leftrightarrow\dfrac{x}{x-4}=0\Leftrightarrow x=0\)
b: \(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
hay x=-2