GPT: \(2x^2+2x+1=\left(2x+3\right)\left(\sqrt{x^2+x+2}-1\right)\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
ĐKXĐ: ...
Từ pt dưới:
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)
\(\Leftrightarrow y=x-2\)
Thế vào pt trên:
\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)
\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)
\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)
\(\Leftrightarrow x^2-5x+2=0\)
GPT: \(\log_2\left(\sqrt{2x^2+1}+1\right)+\left|x\right|=\log_2\left(\sqrt{2x^2+1}-1\right)+\sqrt{2x^2+1}\)
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
Gpt \(2\left(2x^2+2x+1\right)=\left(5x+2\right)\sqrt{x^2+1}\)
Ta có: \(2\left(2x^2+2x+1\right)=\left(5x+2\right)\sqrt{x^2+1}\)
\(\Leftrightarrow4\left(2x^2+2x+1\right)^2=\left(5x+2\right)^2\left(x^2+1\right)\)
\(\Leftrightarrow16x^4+32x^3+32x^2+16x+4=25x^4+20x^3+29x^2+20x+4\)
\(\Leftrightarrow9x^4-12x^3-3x^2+4x=0\)
\(\Leftrightarrow\left(9x^4-12x^3\right)-\left(3x^3-4x\right)=0\)
\(\Leftrightarrow x\left(3x-4\right)\left(3x^3-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases};x^3=\frac{1}{3}}\)
\(\Leftrightarrow x\in\left\{0;\frac{1}{\sqrt[3]{3}};\frac{4}{3}\right\}\)
Bài của Huyen Trang bổ sung thêm tập xác định R nữa là ok!
GPT :
\(2x^2+7x+1+\left(2x-1\right)\sqrt{x^2+1}=0\)
Gpt: \(\sqrt{x+5}+\sqrt{3-x}-2\left(\sqrt{15-2x-x^2}+1\right)=0\)
\(ĐK:-5\le x\le3\)
Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:
\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm pt là ...
GPT: \(\frac{x^2-2x+14}{\sqrt{\left(7-2x\right)\left(2x+3\right)}}+\frac{12+2x-x^2}{\sqrt{4x^2-8x+29}}=20\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
1) GPT : \(\sqrt{2x+2}-\sqrt{2x-1}=x\)
2) GPT : \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x-2\right)}=2\sqrt{x\left(x+3\right)}\)
3) Cho phương trình : \(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=m\left(1\right)\)
a) Giải phương trình khi \(m=3\)
b) Tìm m để phương trình (1) có nghiệm
4) Tìm a để phương trình sau có nghiệm:
\(\sqrt{2+x}+\sqrt{2-x}-\sqrt{\left(2+x\right)\left(2-x\right)}=a\)
a/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
\(\Rightarrow x=1\)
2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)
- Nhận thấy \(x=0\) là 1 nghiệm
- Với \(x\ge2\):
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)
Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)
\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm
- Với \(x\le-3\)
\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)
\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)
\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))
\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)
\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=0\)
Bài 3: ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)
\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)
Phương trình trở thành:
\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)
a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)
\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)
\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)
\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)
\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)
Bài 4 làm tương tự bài 3