giải phương trình sau:
\(\dfrac{x^2-x}{x+3}\) - \(\dfrac{x^2}{x-3}\) = \(\dfrac{7x^2-3x}{9-x^2}\)
\(\dfrac{x^2-x}{x+3}\)_\(\dfrac{x^2}{x-3}\)=\(\dfrac{7x^2-3x}{9-x^2}\)
Giải Phương Trình
\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\\ \Leftrightarrow\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=-\dfrac{7x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ đkxđ:\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\\ \Leftrightarrow\dfrac{\left(x^2-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{7x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{0}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow0=0\left(luon.dung\right)\)
Giải phương trình sau :
a,\(\dfrac{7-3x}{12}+\dfrac{5x+2}{7}=x+13\)
b,\(\dfrac{3\left(x+3\right)}{4}-\dfrac{1}{2}=\dfrac{5x+9}{7}-\dfrac{7x-9}{4}\)
c,\(\dfrac{2x+1}{3}-\dfrac{5x+2}{7}=x+3\)
d,\(\dfrac{2x-3}{3}-\dfrac{2x+3}{7}=\dfrac{4x+3}{5}-17\)
a: \(\Leftrightarrow7\left(7-3x\right)+12\left(5x+2\right)=84\left(x+13\right)\)
\(\Leftrightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow39x-84x=1092-73\)
=>-45x=1019
hay x=-1019/45
b: \(\Leftrightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
=>21x+63-14=20x+36-49x+63
=>21x+49=-29x+99
=>50x=50
hay x=1
c: \(\Leftrightarrow7\left(2x+1\right)-3\left(5x+2\right)=21x+63\)
=>14x+7-15x-6-21x-63=0
=>-22x-64=0
hay x=-32/11
d: \(\Leftrightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-17\cdot105\)
=>70x-105-30x-45=84x+63-1785
=>40x-150-84x+1722=0
=>-44x+1572=0
hay x=393/11
a, msc 12.7=84
Chuyển vế về =0 rồi làm
b,msc 28
c,làm tương tự
a, \(\Rightarrow49-21x+60x+24=84x+1092\)
\(\Leftrightarrow-45x=1019\Leftrightarrow x=-\dfrac{1019}{45}\)
b, \(\Rightarrow21\left(x+3\right)-14=4\left(5x+9\right)-7\left(7x-9\right)\)
\(\Leftrightarrow21x+63-14=20x+36-49x+63\)
\(\Leftrightarrow50x=50\Leftrightarrow x=1\)
c, \(\Rightarrow14x+7-15x-6=21x+63\Leftrightarrow-22x=62\Leftrightarrow x=-\dfrac{31}{11}\)
d, \(\Rightarrow35\left(2x-3\right)-15\left(2x+3\right)=21\left(4x+3\right)-105.17\)
\(\Leftrightarrow70x-105-30x-45=84x+63-1785\)
\(\Leftrightarrow-44x=-1572\Leftrightarrow x=\dfrac{393}{11}\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
Giải các phương trình sau:
\(a.\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(b.\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(c.2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)
\(d.\dfrac{7}{8}x-5\left(x-9\right)=\dfrac{20x+1,5}{6}\)
\(e.\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(f.\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
a: =>10x-4=15-9x
=>19x=19
hay x=1
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x-32x=60-9
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
=>3x=6/5
hay x=2/5
d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)
\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)
=>21x-120x+1080=80x+60
=>-179x=-1020
hay x=1020/179
e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>95x+6x=96+5
=>x=1
f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)
=>6x+24-30x+120=10x-15x+30
=>-24x+96=-5x+30
=>-19x=-66
hay x=66/19
Giải các phương trình:
a,\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
b,\(\dfrac{2x-1}{x^3+1}=\dfrac{2}{x^2-x+1}-\dfrac{1}{x+1}\)
giải các phương trình sau
1, \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)
2, \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)
3, \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)
\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(3x+9+4x-12=3x-7\)
\(\Leftrightarrow4x=-7+12-9=-4\)
hay \(x=-1\left(nhận\right)\)
2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)
\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)
Suy ra: \(3x+12-4x+16=3x-4\)
\(\Leftrightarrow28-4x=-4\)
\(\Leftrightarrow4x=32\)
hay \(x=8\left(tm\right)\)
3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
Suy ra: \(5x^2-12+3x+3=5x^2-5x\)
\(\Leftrightarrow3x-9+5x=0\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(nhận\right)\)
giải phương trình:
\(\dfrac{2}{x-3}\) + \(\dfrac{3}{x+3}\)=\(\dfrac{7x+5}{x^2-9}\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{7x+5}{x^2-9}\left(x\ne3;x\ne-3\right)\\ < =>\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{7x+5}{\left(x-3\right)\left(x+3\right)}\)
suy ra:
`2(x+3)+3(x-3)=7x+5`
`<=>2x+6+3x-9=7x+5`
`<=>2x+3x-7x=5-6+9`
`<=> -2x=8`
`<=> x=-4(tm)`
ĐKXĐ: \(x\ne\pm3\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{7x+5}{x^2-9}\)
\(\Leftrightarrow\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{7x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2\left(x+3\right)+3\left(x-3\right)=7x+5\)
\(\Leftrightarrow2x+6+3x-9=7x+5\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\) (thỏa)
Vậy pt có nghiệm \(x=-4\)
giải các phương trình sau
a)\(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
b)\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{x^2-9}\)
\(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow\dfrac{20\left(2x-1\right)}{60}+\dfrac{15\left(3x-2\right)}{60}=\dfrac{12\left(4x-3\right)}{60}\)
`<=> 20(2x-1) +15(3x-2) =12(4x-3)`
`<=> 40x - 20 + 45x - 30 = 48x - 36`
`<=> 85x -50 = 48x - 36`
`<=> 85x-48x = -36+50`
`<=> 37x =14`
`<=> x= 14/37`
Vậy phương trình có nghiệm `x=14/37`
__
\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{x^2-9}\)
\(\Leftrightarrow\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{\left(x-3\right)\left(x+3\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
Ta có : \(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-6}{\left(x-3\right)\left(x+3\right)}\)
`=> 5x + 15 + 4x -12=x-6`
`<=> 9x + 3=x-6`
`<=> 9x-x=-6-3`
`<=> 8x = -9`
`<=>x=-9/8(tm)`
Vậy phương trình có nghiệm `x=-9/8`
` @ yngoc`
bài 2 giải các phương trình sau
b,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)
d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\) p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\) r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)
h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\) t,\(\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
j,\(\dfrac{5}{3x+2}=2x-1\) u,\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
w,\(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\) s, \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{2x}{\left(x-1\right)\left(x-3\right)}\)
ơ,\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\) v,\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
z,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\) ư,\(\dfrac{x+2}{x-2}-\dfrac{-2}{x^2-2x}=\dfrac{1}{x}\)
o,\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) ô,\(1-\dfrac{1}{1-x}=\dfrac{x^2}{x^2-1}\) zz,\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
b: =>\(4\left(3-7x\right)=x+1\)
=>12-28x=x+1
=>-29x=-11
=>x=11/29
m:=>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặcx=7
d: =>9x-42=2x+10
=>7x=52
=>x=52/7
p: \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
=>12x^2+16x+21x+28=12x^2-12x+5x-5
=>37x+28=7x-5
=>30x=-33
=>x=-11/10
j: =>(2x-1)(3x+2)=5
=>6x^2+4x-3x-2-5=0
=>6x^2-x-7=0
=>6x^2-7x+6x-7=0
=>(6x-7)(x+1)=0
=>x=7/6 hoặc x=-1