bài 2 giải các phương trình sau
b,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)
d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\) p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\) r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)
h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\) t,\(\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
j,\(\dfrac{5}{3x+2}=2x-1\) u,\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
w,\(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\) s, \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{2x}{\left(x-1\right)\left(x-3\right)}\)
ơ,\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\) v,\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
z,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\) ư,\(\dfrac{x+2}{x-2}-\dfrac{-2}{x^2-2x}=\dfrac{1}{x}\)
o,\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) ô,\(1-\dfrac{1}{1-x}=\dfrac{x^2}{x^2-1}\) zz,\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
b: =>\(4\left(3-7x\right)=x+1\)
=>12-28x=x+1
=>-29x=-11
=>x=11/29
m:=>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặcx=7
d: =>9x-42=2x+10
=>7x=52
=>x=52/7
p: \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
=>12x^2+16x+21x+28=12x^2-12x+5x-5
=>37x+28=7x-5
=>30x=-33
=>x=-11/10
j: =>(2x-1)(3x+2)=5
=>6x^2+4x-3x-2-5=0
=>6x^2-x-7=0
=>6x^2-7x+6x-7=0
=>(6x-7)(x+1)=0
=>x=7/6 hoặc x=-1