ĐK: ` x \ne \pm 3`
`(x^2-x)/(x+3)-(x^2)/(x-3)=(7x^2-3x)/(9-x^2)`
`<=> (x^2-x)(x-3)-x^2 (x+3) = -(7x^2-3x)`
`<=> −7x^2+3x=-7x^2+3x`
`<=> 0x=0 forall x`
Vậy `S=RR \\ {+-3}`.
ĐK: ` x \ne \pm 3`
`(x^2-x)/(x+3)-(x^2)/(x-3)=(7x^2-3x)/(9-x^2)`
`<=> (x^2-x)(x-3)-x^2 (x+3) = -(7x^2-3x)`
`<=> −7x^2+3x=-7x^2+3x`
`<=> 0x=0 forall x`
Vậy `S=RR \\ {+-3}`.
\(\dfrac{x^2-x}{x+3}\)_\(\dfrac{x^2}{x-3}\)=\(\dfrac{7x^2-3x}{9-x^2}\)
Giải Phương Trình
Giải phương trình sau :
a,\(\dfrac{7-3x}{12}+\dfrac{5x+2}{7}=x+13\)
b,\(\dfrac{3\left(x+3\right)}{4}-\dfrac{1}{2}=\dfrac{5x+9}{7}-\dfrac{7x-9}{4}\)
c,\(\dfrac{2x+1}{3}-\dfrac{5x+2}{7}=x+3\)
d,\(\dfrac{2x-3}{3}-\dfrac{2x+3}{7}=\dfrac{4x+3}{5}-17\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
Giải các phương trình sau:
\(a.\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(b.\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(c.2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)
\(d.\dfrac{7}{8}x-5\left(x-9\right)=\dfrac{20x+1,5}{6}\)
\(e.\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(f.\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
Giải các phương trình:
a,\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
b,\(\dfrac{2x-1}{x^3+1}=\dfrac{2}{x^2-x+1}-\dfrac{1}{x+1}\)
giải các phương trình sau
1, \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)
2, \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)
3, \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
giải phương trình:
\(\dfrac{2}{x-3}\) + \(\dfrac{3}{x+3}\)=\(\dfrac{7x+5}{x^2-9}\)
giải các phương trình sau
a)\(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
b)\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-6}{x^2-9}\)
bài 2 giải các phương trình sau
b,\(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) m,\(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)
d,\(\dfrac{3x-14}{x+5}=\dfrac{2}{3}\) p,\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
f,\(\dfrac{6}{x}-1=\dfrac{2x-3}{3}\) r,\(\dfrac{1}{x+3}+\dfrac{1}{x-1}=\dfrac{10}{\left(x+3\right)\left(x-1\right)}\)
h,\(\dfrac{1}{x-2}+3=\dfrac{x-3}{2-x}\) t,\(\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
j,\(\dfrac{5}{3x+2}=2x-1\) u,\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
w,\(\dfrac{5x}{2x+2}+1=-\dfrac{6}{x+1}\) s, \(\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{2x}{\left(x-1\right)\left(x-3\right)}\)
ơ,\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\) v,\(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
z,\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\) ư,\(\dfrac{x+2}{x-2}-\dfrac{-2}{x^2-2x}=\dfrac{1}{x}\)
o,\(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) ô,\(1-\dfrac{1}{1-x}=\dfrac{x^2}{x^2-1}\) zz,\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)