Bài 1: Rút gọn phân thức
a) \({36 ({x-2})^3 \over 32-16x}\)
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)
b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)
c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)
d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)
Áp dụng quy tắc đổi dấu rồi rút gọn phân thức :
a) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
b) \(\dfrac{x^2-xy}{5y^2-5xy}\)
a) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{16\left(2-x\right)}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}\)\(=\dfrac{36\left(x-2\right)^3:4\left(x-2\right)}{-16\left(x-2\right):4\left(x-2\right)}\)\(=\dfrac{9\left(x-2\right)^2}{-4}\)
b) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\left(x-y\right)}{5y\left(y-x\right)}=\dfrac{x\left(x-y\right)}{-5y\left(x-y\right)}\)\(=\dfrac{x}{-5y}\)
bài 1 : Rút gọn biểu thức
a) 3x.(x-2)-5x(1-x)-8(x^2-3)
b) (7x-3) (2x+1) - (5x-2) (x+4)-9x^2 + 17x
\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=0-11x+24\)
\(=-11x+24\)
\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)
\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)
\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)
\(=0+0+5\)
\(=5\)
Rút gọn phân thức
a)3x2 - 12x / x(x - 4)
b) x2+ 2x + 1 / 3(x + 1)
\(a,\dfrac{3x^2-12x}{x\left(x-4\right)}=\dfrac{3x\left(x-4\right)}{x\left(x-4\right)}=3\\ b,\dfrac{x^2+2x+1}{3\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{3\left(x+1\right)}=\dfrac{x+1}{3}\)
Rút gọn phân thức
a)3x2 - 12x / x(x - 4)
b) x2+ 2x + 1 / 3(x + 1)
\(a,\dfrac{3x^2-12x}{x\left(x-4\right)}=\dfrac{3x\left(x-4\right)}{x\left(x-4\right)}=3\\ b,\dfrac{x^2+2x+1}{3\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{3\left(x+1\right)}=\dfrac{x+1}{3}\)
Bài 1: Rút gọn biểu thức
a)y(12y+3)+4(7-3y2) b)(x-2)2-(3x+1).(x-3)
Phải giải ra rõ ràng nha
a) \(=12y^2+3y+28-12y^2=3y+28\)
b) \(=x^2-4x+4-3x^2+8x+3=-2x^2+4x+7\)
Bài 2: Rút gọn biểu thức
a.(-2x3). (x2-5x-\(\dfrac{1}{2}\)) -(x3+3)
b.2(x-5y).(x+y)+(x+y)2+(5y-x2)
Bài 1 : ( 3 đ ) : Rút gọn các phân thức sau a)\(\dfrac{16x^2-1}{16x^2-8x+1}\) b)\(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(a.\)
\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)
\(b.\)
\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)
a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)
\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)
\(=\dfrac{4x+1}{4x-1}\)
b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{y-2x}{y+2x}\)
* Giải phương trình
a. \(\sqrt{x^2-4x+4}=5\)
b. \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
* Cho biểu thức
A= \(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) với a>0
a. Rút gọn biểu thức A
b. Tính giá trị nhỏ nhất của A
a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy...
b)Đk: \(x\ge-1\)
Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)
\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)
Vậy...
\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)
a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
✱ giải pt:
a.\(\sqrt{x^2-4x+4}\)\(=5\)
⇔\(\sqrt{\left(x-2\right)^2}=5\)
⇒\(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy....
b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
⇔ \(4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
⇔ \(4\sqrt{x+1}=16\)
⇔ \(\sqrt{x+1}=16\)
⇒ \(x+1=256\)
⇔ \(x=255\)
vậy.....