Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chau Pham
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 11:26

\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)

Lấp La Lấp Lánh
11 tháng 10 2021 lúc 11:26

a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)

\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)

b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

Hoàng Tử Tuấn Minh
Xem chi tiết
Phương Trâm
3 tháng 3 2017 lúc 20:08

Bài 1:

\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow x.\left(1+2y\right)=30\)

\(2y\) chẵn nên \(1+2y\) lẻ

\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)

\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)

Phương Trâm
3 tháng 3 2017 lúc 21:47

Bài 2:

\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)

\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)

Phương Trâm
3 tháng 3 2017 lúc 21:48

Câu B dấu chấm than là kí hiệu gì thế bạn?

Phạm Trịnh Phương Thảo
Xem chi tiết
Erika Alexandra
Xem chi tiết
cấn thị thu hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 20:36

Câu a đề sai rồi bạn

b: \(=n^2-1-n^2+12n-35=12n-36⋮12\)

goku super saiyan 2
Xem chi tiết
Hoàng Đức Phát
3 tháng 4 2019 lúc 20:43

1

B= 12/1.4.7 + 12/4.7.10 + 12/7.10.13 + ... + 12/54.57.60

=> 1/2B= 6/1.4.7 + 6/4.7.10 + 6/7.10.13 + ... + 6/54.57.60

=> 1/2B = 1/1.4 - 1/4.7 +1/4.7 - 1/7.10 +1/7.10 - 1/10.13 + ... + 1/54.57 - 1/57.60

=> 1/2B =1/1.4 - 1/57.60

=> 1/2B = 1/4 - 1/3420

=> 1/2B = 427/1710

=> B = 427/1710 . 2

=> B = 427/855

Hoàng Đức Phát
3 tháng 4 2019 lúc 20:51

2

A= 1+ 1/22 + 1/32 +...+1/1002

  =1+ 1/2.2 + 1/3.3 +...+ 1/100.100

=> A< 1+ 1/1.2 + 1/2.3 +...+ 1/99.100

   = 1+ 1 - 1/2 +1/2 - 1/3 +...+1/99 - 1/100

   = 2- 1/100 < 2

Vậy A < 2

shir
Xem chi tiết
Người này .........đã .....
8 tháng 12 2021 lúc 11:27

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

Hoàng Tử Tuấn Minh
Xem chi tiết
Đạt BlackYT
Xem chi tiết