\(\sqrt{11-2\sqrt{10}}\)
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)
b: =căn 10-3+4-căn 10=1
a: \(=\sqrt{11-4\sqrt{6}+\sqrt{15}}\)
Rút gọn:
\(A=\sqrt{11-2\sqrt{10}}+\sqrt{9-2\sqrt{4}}-\sqrt{10}-\sqrt{7}\)
\(B=\frac{\sqrt{3}+\sqrt{11+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(A=\sqrt{11-2\sqrt{10}}+\sqrt{9-2\sqrt{4}}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{\left(\sqrt{10}-1\right)^2}+\sqrt{5}-\sqrt{10}-\sqrt{7}=\sqrt{10}-1+\sqrt{5}-\sqrt{10}-\sqrt{7}\)
\(=\sqrt{5}-\sqrt{7}-1\)
\(\sqrt{\left(3-\sqrt{10}\right)^2}+\sqrt{11-2\sqrt{10}}\)
\(=\left|3-\sqrt{10}\right|+\sqrt{\left(\sqrt{10}-1\right)^2}\\ =\sqrt{10}-3+\sqrt{10}-1=\sqrt{10}-4\)
Tính: \(N=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
Tính \(E=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
\(\sqrt{11-2\sqrt{10}-4\sqrt{2}-4\sqrt{5}}-\sqrt{7-2\sqrt{10}}\)
Phân tích
a) \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
b) \(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)
c) \(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}\)
\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2-2\sqrt{2.3}+3}+\sqrt{2+2\sqrt{2.3}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)
\(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}=\sqrt{2-2\sqrt{2.5}+5}+\sqrt{2+2\sqrt{2.5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)
\(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}\)
Ta có: \(\left(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}\right)^2=11+2\sqrt{8}+11-2\sqrt{8}+2\sqrt{\left(11+2\sqrt{8}\right)\left(11-2\sqrt{8}\right)}=22+2\sqrt{121-32}=22+2\sqrt{89}\)
=>\(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}=\sqrt{22+2\sqrt{89}}\)
a) \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{3}+\sqrt{2}\right)=2\sqrt{3}\)
b) \(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}=\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)=2\sqrt{5}\)
c) \(\sqrt{11+2\sqrt{8}}+\sqrt{11-2\sqrt{8}}=chả-biết-nữa\)
sorry
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
Rút gọn giùm mình với ạ
\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11+\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)
\(=\sqrt{7-2\sqrt{6}}-\dfrac{5\left(\sqrt{2}-1\right)}{\sqrt{5}\left(\sqrt{2}-1\right)}+\left|11+2\sqrt{30}\right|\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{1^2-2\sqrt{6}\cdot1+\left(\sqrt{6}\right)^2}-\dfrac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{5}\cdot\sqrt{6}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{6}\right)^2}-\sqrt{5}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|1-\sqrt{6}\right|-\sqrt{5}+\left(11+2\sqrt{30}\right)\left|\sqrt{6}-\sqrt{5}\right|\)
\(=-1+6-\sqrt{5}+\left(\sqrt{6}+\sqrt{5}\right)^2\left(\sqrt{6}-\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left[\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2\right]\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\left(6-5\right)\left(\sqrt{6}+\sqrt{5}\right)\)
\(=\sqrt{6}-1-\sqrt{5}+\sqrt{6}+\sqrt{5}\)
\(=2\sqrt{6}-1\)
\(=\sqrt{6+1-2\sqrt{6}}-\dfrac{\sqrt{5}\left(\sqrt{10}-\sqrt{5}\right)}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+\sqrt{120}\right)^2}\\ =\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}-\sqrt{5}+\sqrt{\left(11^2-120\right)\left(11+2\sqrt{30}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{1\left(6+5+2\sqrt{6\cdot5}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{6}+\sqrt{5}=2\sqrt{6}-\sqrt{1}\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
\(\sqrt{11+2\sqrt{18}}\)
\(\sqrt{7+2\sqrt{10}}\)
\(\sqrt{7+4\sqrt{3}}\)
\(\sqrt{12-2\sqrt{55}}\)
a) \(\sqrt{11+2\sqrt[]{18}}\)
\(=\sqrt{11+6\sqrt[]{2}}\)
\(=\sqrt{9+2.3\sqrt[]{2}+2}\)
\(=\sqrt{\left(3+\sqrt[]{2}\right)^2}=\left|3+\sqrt[]{2}\right|=3+\sqrt[]{2}\)
b) \(\sqrt[]{7+2\sqrt[]{10}}\)
\(=\sqrt[]{7+2\sqrt[]{5}.\sqrt[]{2}}\)
\(=\sqrt[]{5+2\sqrt[]{5}.\sqrt[]{2}+2}\)
\(=\sqrt[]{\left(\sqrt[]{5}+\sqrt[]{2}\right)^2}=\left|\sqrt[]{5}+\sqrt[]{2}\right|=\sqrt[]{5}+\sqrt[]{2}\)
c) \(\sqrt[]{7+4\sqrt[]{3}}\)
\(=\sqrt[]{4+2.2\sqrt[]{3}+3}\)
\(=\sqrt[]{\left(2+\sqrt[]{3}\right)^2}=\left|2+\sqrt[]{3}\right|=2+\sqrt[]{3}\)
d) \(\sqrt[]{16-2\sqrt[]{55}}\) \(\left(12\rightarrow16\right)\)
\(=\sqrt[]{11-2\sqrt[]{5}.\sqrt[]{11}+5}\)
\(=\sqrt[]{\left(\sqrt[]{11}-\sqrt[]{5}\right)^2}==\left|\sqrt[]{11}-\sqrt[]{5}\right|=\sqrt[]{11}-\sqrt[]{5}\left(\sqrt[]{11}>\sqrt[]{5}\right)\)