Rút gọn
H=\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
F=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
G=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Z=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Đưa biểu thức trong căn về dạng hình phương của một tổng hoặc một hiệu:
f/ \(\sqrt{8-2\sqrt{15}+}\sqrt{4-2\sqrt{3}}\)
g/ \(\sqrt{42-10\sqrt{17}+\sqrt{33-8\sqrt{17}}}\)
h/ \(\sqrt{12-2\sqrt{35}}+\sqrt{7-2\sqrt{10}}-\sqrt{49}\)
i/ \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{3-\sqrt{5}}\)
l/ \(\sqrt{11+4\sqrt{6}}-\sqrt{9-4\sqrt{2}}\)
a. P=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}+\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
b.P= (\(\frac{2}{\sqrt{3}-1}-\frac{52}{3\sqrt{3}-1}+\frac{12}{3-\sqrt{3}}\)) ( 5+\(\sqrt{27}\))
c. P= (\(\frac{2+\sqrt{2}}{\sqrt{2}+1}+1\))(\(\frac{2-\sqrt{2}}{\sqrt{2}-1}-1\))
d. P=\(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
đ. P=(2+\(\sqrt{4+\sqrt{6+2\sqrt{5}}}\) )(\(\sqrt{10}-\sqrt{2}\) )
e. P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
ê. P= \(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)
g. G= \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
h. H=\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
i. I= \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
Đưa biểu thức trong căn về dạng hình phương của một tổng hoặc một hiệu:
a/ \(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
b/ \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
c/\(\sqrt{9-4\sqrt{5}}+\sqrt{12-2\sqrt{35}}\)
d/ \(\sqrt{4-2\sqrt{3}}+\sqrt{28-10\sqrt{3}}\)
e/ \(\frac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}\)
Rút gọn biểu thức :
a) \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
b) \(B=\frac{2+\sqrt{6}+\sqrt{10}+\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{8}+\sqrt{12}+\sqrt{20}}.\frac{\sqrt{2}-1}{3}\)
Rút gọn
a, \(\frac{2\sqrt{3-1}}{\sqrt{15}}-\frac{2-\sqrt{5}}{\sqrt{3}}-\frac{4\sqrt{15}-10\sqrt{3}}{15}\)
b, \(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a-1}}+\frac{\sqrt{a-1}}{\sqrt{a}+1}\right)\)
c, \(\sqrt{4+\sqrt{7}-\sqrt{4-\sqrt{7}}}\)
d, \(6+2\sqrt{2}.3-\sqrt{4+\sqrt{2\sqrt{3}}}\)
e, \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Help me !!!
bài 1 : rút gọn
a)\(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)
b)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
bài 2
a)\(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}\)
b)\(\frac{\sqrt{6}-5\sqrt{3}}{2\sqrt{2}-10}\)
c) \(\frac{7-2\sqrt{10}}{5-\sqrt{10}}\)
\(\frac{2\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\frac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)