Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
To Kill A Mockingbird
Xem chi tiết
Khong Biet
8 tháng 12 2017 lúc 13:19

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3=3^n.3.5.2+2^{n+1}.2.3\)\(=\left(5.3^n+2^{n+1}\right).6⋮6\)

Vậy .............

An Võ (leo)
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2020 lúc 21:51

Câu 1:

Ta có: \(55^{n+1}+55^n\)

\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)

Câu 2:

Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)

\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)

\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)

\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)

Trần Đức Mạnh
Xem chi tiết
Sakia Hachi
9 tháng 11 2017 lúc 19:59

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

Sakia Hachi
9 tháng 11 2017 lúc 20:11

cái này dễ hiểu hơn

5^n (5^n + 1) – 6^n (3^n + 2^n) chia hết cho 91
A = 5^n (5^n + 1) – 6^n (3^n + 2^n) = + 5^n – 18^n – 12^n
= 25^n – 18^n – (12^n – 5^n)
Ta có: 25 – 18 chia hết cho 7
Nên 25 đồng dư với 18 khi chia cho 7
Hay 25^n đồng dư với 18^n khi chia cho 7
Suy ra 25^n – 18^n chia hết cho 7
Chứng minh tương tự thì 12^n – 5^n chia hết cho 7
Nên A chia hết cho 7
Mặt khác A = 25^n – 12^n – (18^n – 5^n)
với 25^n – 12^n và 18^n – 5^n đều chia hết cho 13
Suy ra A chia hết cho 13
Vậy A chia hết cho 7.13 = 91

Chuột yêu Gạo
Xem chi tiết
Vip Pro
Xem chi tiết
Phan Văn Tài
17 tháng 4 2016 lúc 21:12

Ta gọi A=1.2+2.3+3.4+...+n.(n+1)

          3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+n.(n+1)(n+2-n+1)

               =[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]

               =n(n+1)(n+2)

=>         A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Vậy 1.2+2.3+3.4+...+n(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Nguyễn Ngọc Sáng
17 tháng 4 2016 lúc 20:55

nhác viết quá

Nguyễn Ngọc Sáng
17 tháng 4 2016 lúc 20:57

viết nãy giờ bị thằng em phá hoại mất công

kiwi nguyễn
Xem chi tiết
lê thị hương giang
18 tháng 6 2019 lúc 18:10

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

Tami Hiroko
Xem chi tiết
lê duy mạnh
8 tháng 10 2019 lúc 21:26

a,(2n+4).2=4(n+2) chia hwtc ho 8

Nguyễn Văn Tuấn Anh
8 tháng 10 2019 lúc 21:28

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Ahwi
8 tháng 10 2019 lúc 21:28

a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)

\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)

\(=n^2+6n+9-n^2+2n-1\)

\(=8n+8\)

\(=8\left(n+1\right)\)

có \(8\left(n+1\right)⋮8\)

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=24n\)

có \(24n⋮24\)

\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)

Nguyễn Hoàng Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 14:32

2:

\(B=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

Tố Như
Xem chi tiết
alibaba nguyễn
24 tháng 6 2017 lúc 16:18

Đề sai rồi b

Tố Như
26 tháng 6 2017 lúc 22:37

Không sai đâu bạn