cho duong thang (d):y=mx+10 va parabol (p):y=x^2.tim tat ca cac gia tri cua m de /x1/>/x2/ (x1<x2)
cho cac doan thang (d1)y=2x+2 ;(d2)y=-x+2 ;(d3)y=mx tim tat ca cac gia tri cua m sao cho (d3) cat ca 2 duong thang (d1) va (d2)
bai 1 : cho 2 pt : x2 -3x+2m+6 =0 (1) va x2+x-2m-10=0 (2) . CMR : voi moi m , it nhat mot trong hai phuong trinh tren co nghiem .
bai 2 : cho parabol (P) : y= -1/4x2 va duong thang (d) co pt : y= (m+1)x+m2+3 (voi m la tham so ). tim tat ca gia tri cua m de duong thang (d) va parabol (P) khong co diem chung .
cho biết y tỉ lệ thuận voi x;y1,y2 la các giá trị của y tuong ung voi cac gia tri x1,x2 của x
a,tìm giá trị cua y tuong ung vs x=x1+x2
b,tim gia tri cua y tuong ung vs x=-2\7*x1
c,tim gia tri tuong ung cua y ung voi x=x1\x2
d,tim gia tri cua y tuong ung vs x=x1*x2
CHO MINH HOI VS
x^2 - 2x -3m^2 = 0 voi m la tham so
1) giai phuong trinh khi m=1
2) tim tat ca gia tri cua m de phuong trinh co 2no x1,x2 khac 0 thoa dieu kien x1/x2 - x2/x1 = 8/3
Ta có : x2 - 2x - 3m2 = 0
Tại m = 1 thì pt trở thành :
x2 - 2x - 3.12 = 0
<=> x2 - 2x - 3 = 0
<=> x2 - 3x + x - 3= 0
<=> x(x - 3) + (x - 3) = 0
<=> (x - 3)(x + 1) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
trong mat phang toa do oxy cho duong thang d y=(k-1)x+2 va parabol p y=x^2
chung minh rang bat cu gia tri nao cua k thi dt d luong cat p tai 2 diem phan biet
goi y1 va y2 la tung do giao diem cua duong thang d va p tim k de y1+y2=y1y2
a ) Phương trình hoành độ của đường thẳng (d) và parapo (P) là :
\(x^2=\left(k-1\right)x+2\)
\(\Leftrightarrow x^2-\left(k-1\right)x-2=0\)
\(\Delta=\left(k-1\right)^2+8=k^2-2k+9>0\)
Vì đen - ta lớn hơn 0 nên với mọi k thì (d) luôn cắt (P) tại 2 điểm phân biệt .
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=k-1\\x_1x_2=-2\end{matrix}\right.\)
Mà : \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(k-1\right)^2+4\\y_1y_2=\left(x_1x_2\right)^2=4\end{matrix}\right.\)
Theo đề bài \(y_1+y_2=y_1y_2\)
\(\Rightarrow\left(k-1\right)^2+4=4\)
\(\Rightarrow k=1\)
Cho x va y la hai dai luong ti le thuan;x1,x2 la hai gia tri khac nhau cua x va y1,y2 la hai gia tri tuong ung cua y. biet x1+x2=-1 va y1+y2=-7. Hay tim gia tri tuong ung cua y voi x=3
vì x và y là hai đại lượng tỷ lệ thuận nên:
\(\frac{x1}{x2}=\frac{y1}{y2}=\frac{x1+x2}{y1+y2}=\frac{-1}{-7}=\frac{1}{7}\) (1)
từ (1) => x=\(\frac{1}{7}y^{ }\)
vậy nếu x=3 thì y = 7.3=21
Cho 2 duong thang d va d' co phuong trinh lan luot la
d:y=ax+a-1
d':y=x+1
Tim cac gia tri cua a de ham so y=ax+a-1 dong bien,nghich bien
Tim gia tri cua a de:d//d'\(d\perp d'\)
2 Voi cac gia tri nao cua m thi do thi ham so y=2x+m-4 cat do thi ham so y=\(\dfrac{1}{4}x^2\) tai 2 diem phan biet
Bài 1:
a: Để hàm số đồng biến thì a>0
Để hàm số nghịch biến thì a<0
b: Để hai đường vuôg góc thì a*1=-1
=>a=-1
Bài 2:
PTHĐGĐ là:
1/4x^2=2x+m-4
=>x^2=8x+4m-16
=>x^2-8x-4m+16=0
Δ=(-8)^2-4(-4m+16)
=64+16m-64=16m
Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0
=>m>0
tim tat ca cac gia tri cua m de hs y= x^4 +2mx^2 +m^2 co ba diem cuc nho hon 3
tim tat ca cac gia tri thuc cua tham so m de bat phuong trinh mx^2 + 2mx -3 < 0 nghiem dung voi moi so thuc x
Trường hợp 1: m=0
=>-3<0(luôn đúng)
=>Nhận
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)
Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)
Vậy: -3<m<=0