Chứng tỏ rằng số có dạng \(\overline{abba}\)bao giờ cũng chia hết cho 11.
Chứng tỏ rằng số có dạng \(\overline{\text{abba}}\) bao giờ cũng chia hết cho 11.
Ta có: abba = 1000a + 100b + 10b + a
= 1001a + 110b
= 11. 91a + 11. 10b
= 11( 91a + 10b ) chia hết cho 11
Vậy abba chia hết cho 11( điều phải chứng minh )
Chúc bạn học tốt! ~ Sorry vì abba ko có gạch trên đầu ( mk ko biết đâu )
chứng tỏ rằng số có dạng abba bao giờ cũng chia hết cho 11
abba = 1000 x a +b x 100 + 10 x b + a
abba =1001 x a + 110 x b
abba = a x 91 x 11 + b x 11 x 10
=> abba chia hết cho 11
abba thi chang chia het cho 11 con gi nua
chứng tỏ rằng số có dạng \(\overline{abba}\) chia hết cho 11
Ta có:
\(\overline{abba}=1001a+110b=11.91a+11.10b=11\left(91a+10b\right)\)
Vì \(11\left(91a+10b\right)\) \(⋮\) 11 nên \(\overline{abba}\) \(⋮\) 11
\(\Rightarrow\) ĐPCM
Ta có:
\(\overline{abba}\) = 1000a + 100b + 10b + a
\(\overline{abba}\) = 1001a + 110b
\(\overline{abba}\) = 11 . (91a + 10b)
Vậy \(\overline{abba}\) \(⋮\) 11.
Chứng tỏ rằng số có dạng \(\overline{abcabc}\) bao giờ cũng chia hết cho 11 (chẳng hạn \(328328⋮11\)) ?
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
* Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng aaaaaa bao giờ cũng chia hết cho 3.
c) Số có dạng abcabc bao giờ cũng chia hết cho 13 và 11.
d) ( ab+ ba) chia hết 11
a ) aaa=a.111=a.(3.37)
=>aaa bao giờ cũng chia hết cho 37
b) aaaaaa=a.111111=a.(3.37037)
=> aaaaaa bao giờ cũng chia hết cho 3
c) abcabc=abc.1001=abc.(7.13.11)
=> abcabc bao giờ cũng chia hết cho 13;11
d) ab+ba=(10a+b)+(10b+a)=(10a+a)+(10b+b)=11a+11b
=> ab+ba chia hết cho 11
ủng hộ nha
a) aaa = 111a = 37 . 3 . a
b) aaaaaa = 111111a = 37037 . 3 . a
c) abcabc = 1001abc = 77.13 . abc
abcabc = 1001abc = 77.13.abc = 7 .11.13.abc
d) (ab + ba) = 10a + b + 10b + a =11a + 11b = 11.(a+b)
a) aaa = a x 100 + a x 10 + a =a x 111 =a x 3 x 37 chia hết cho 37
b) aaaaaa = a x 111 111 = a x 3037 x 3 cha hết cho 3
c) abc abc = abc x 1001 = abc x 11 x 13x 7 chia hết cho 11 và 13
d) (ab+ba) = ax10+b + b x10+a=11xa+11xa =11 x(a+b) chia hết cho 11
10. Chứng tỏ rằng:
a) Số có dạng 𝑎̅̅𝑏̅̅𝑏̅̅𝑎̅ bao giờ cũng chia hết cho 11.
b) Số có dạng ̅𝑎̅𝑎̅̅𝑎̅ bao giờ cũng chia hết cho 37.
c) Số có dạng ̅𝑎̅𝑎̅̅𝑎̅̅𝑎̅𝑎̅̅𝑎̅ bao giờ cũng chia hết cho 37.
d) Số có dạng ̅𝑎̅𝑏̅̅𝑐̅̅𝑎̅̅𝑏̅𝑐̅ bao giờ cũng chia hết cho 13 và 11.
1.Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7.
2. Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
1 chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết chia hết cho 7
2 chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
1.Ta có :
aaaaaa = a . 111111 = a . 15873 . 7 \(\vdots\) 7
2.Ta có :
abc abc = abc . 1001 = abc . 7 . 11 . 13 \(\vdots\) 11
chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11(chẳng hạn: 328328 chia hết cho 11)
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11