Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)
Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11(chẳng hạn 328328 chia hết cho 11)
Chứng tỏ rằng số có dạng \(\overline{aaaaaa}\) bao giờ cũng chia hết cho 7 (chẳng hạn : \(333333⋮7\)) ?
Chứng tỏ rằng số có dạng \(\overline{\text{abba}}\) bao giờ cũng chia hết cho 11.
Chứng tỏ rừng số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho 37 ?
Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại, ta luôn được một số chia hết cho 11 (chẳng hạn \(37+73=110\), chia hết cho 11) ?
Chứng tỏ rằng lấy một số có hai chữ số,cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại,ta luôn luôn được một số chia hết cho 11(chẳng hạn:37+73=110,chia hết cho 11)
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
Chứng tỏ rằng hiệu \(\overline{ab}-\overline{ba}\) (với \(a\ge b\) ) bao giờ cũng chia hết cho 9 ?
CMR:
1. nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
2. số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho 37
3. \(\overline{ab}\)-\(\overline{ba}\) bao giờ cũng chia hết cho 9