Bài 10: Tính chất chia hết của một tổng. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đàm Nguyễn Anh Duy

Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11(chẳng hạn 328328 chia hết cho 11)

Lam Ngo Tung
21 tháng 10 2017 lúc 13:03

Theo bài ra ta có :

\(\overline{abcabc}\)

\(=\overline{abc}.1000+\overline{abc}.1\)

\(=\overline{abc}.\left(1000+1\right)\)

\(=\overline{abc}.1001\)

\(=\overline{abc}.11.91\)

\(=\left(\overline{abc}.91\right).11\)

\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)

Trần Minh Hoàng
21 tháng 10 2017 lúc 10:10

Ta có:

\(\overline{abcabc}=1001\overline{abc}=11.91\overline{abc}\)

\(11.91\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11

\(\Rightarrow\) ĐPCM(điều phải chứng minh)

Siêu sao bóng đá
21 tháng 10 2017 lúc 14:00

abcabc \(⋮\) 11 vì:

abcabc = abc . 1000 + abc

abcabc = abc . ( 1000 + 1 )

abcabc = abc . 1001

abcabc = abc . 11 . 91

Mà 11 \(⋮\) 11 \(\Rightarrow\) abc . 11 . 91 \(⋮\) 11

Vậy abcabc \(⋮\) 11 ( đpcm )


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đàm Nguyễn Anh Duy
Xem chi tiết
Đàm Nguyễn Anh Duy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
minh anh
Xem chi tiết