tìm min p=x^2+x/x+y^2+y/y+z^2+z/z -1/x+y+z biết x^2+y^2+z^2=3
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
Đề bài sai, biểu thức này ko có min
cho x,y,z dương thỏa \(xyz=1\)
tìm min \(P=\dfrac{x+2}{x^3\left(y+z\right)}+\dfrac{y+2}{y^3\left(z+x\right)}+\dfrac{z+2}{z^3\left(x+y\right)}\)
Ta có nhận xét sau:
\(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)
Tương tự với các phân thức còn lại
Ta đặt:
\(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)
\(\Rightarrow abc=1\) và \(a,b,c>0\)
Biểu thức P trở thành:
\(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)
Dễ thấy:
\(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)
\(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)
Do đó:
\(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`
`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`
Ad bđt cosi-swart:
`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`
Mà `xy+yz+zx<=x^2+y^2+z^2)`
`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`
Dấu "=" xảy ra khi `x=y=z=1`
`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`
`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`
`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`
Áp dụng BĐT cosi-swart ta có:
`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`
Mà`xy+yz+zx<=x^2+y^2+z^2`
`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`
Dấu "=" xảy ra khi `x=y=z=1.`
Cho x,y,z dương và x+y+z=1. Tìm Min của
S=x^2/y+z +y^2/z+x + z^2/x+y
Áp dụng bđt svacxo :
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy \(Min_S=\frac{1}{2}\)khi \(x=y=z=\frac{1}{3}\)
Bài làm:
Áp dụng bất đẳng thức Svac-xơ ta có:
\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1^2}{2.1}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{y+x}\Rightarrow x=y=z=1\)
Vậy Min(S)=1 khi \(x=y=z=1\)
Học tốt!!!!
À mk nhầm dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)nhé!
1) cho x;y;z dương thỏa mãn x+y+z=2 .tìm min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
2) cho x;y;z là các số dương sao cho \(x+y+z\ge12\)
tìm min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
=>minP=1 <=> x=y=z=2/3
Cho x,y,z>0 và x+y+z≤1. Tìm Min \(P=x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Lời giải:
Áp dụng BĐT Cô-si:
\(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\geq \frac{1}{3}.(\frac{9}{x+y+z})^2=\frac{27}{(x+y+z)^2}\)
\(\Rightarrow P\geq \frac{(x+y+z)^2}{3}+\frac{27}{(x+y+z)^2}\)
Áp dụng BĐT Cô-si:
\(\frac{(x+y+z)^2}{3}+\frac{1}{3(x+y+z)^2}\geq \frac{2}{3}\)
\(\frac{80}{3(x+y+z)^2}\geq \frac{80}{3}\)
\(\Rightarrow P\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}\)
Vậy $P_{\min}=\frac{82}{3}$ khi $x=y=z=\frac{1}{3}$
Cho x;y;z dương và x+y+z=3.Tìm Min của \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Bài này thì chắc cô si ngược dấu thôi:v
\(LHS=\Sigma\frac{x}{1+y^2}=\Sigma x.\left(1-\frac{y^2}{1+y^2}\right)\)
\(\ge\Sigma x\left(1-\frac{y}{2}\right)=x+y+z-\frac{xy+yz+zx}{2}\)
\(\ge x+y+z-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
P/s: check xem có ngược dấu chỗ nào ko:v
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Cho x,y,z thoả mãn \(x^2+y^2+z^2=3\)
Tìm min của \(A=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)