a) cho a+b+c=0. Rút gọn biểu thức: M= a³+b³+c(a²+b²) -abc
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a+b+c=0 . Rút gọn biểu thức :
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
Ta có :
\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(M=a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)
\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)
\(=-ab\left(a+b+c\right)=0\)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
\(M=a^3+b^3+c.\left(a^2+b^2\right)-abc\)
\(M=a^3+b^3+ca^2+cb^2-abc\)
\(M=a^2.\left(a+c\right)+b^2.\left(b+c\right)-abc\)
\(M=a^2.\left(-b\right)+b^2.\left(-a\right)\)
\(M=-a^2b-b^2a\)
\(M=-ab.\left(a+b\right)\)
\(M=-ab.\left(-c\right)\)
\(M=abc\)
Tham khảo nhé~
Ta có a+b+c=0 <=> a+b=-c
M= (a+b)(a2-ab+b2)+a2c+b2c-abc
=-ca2+abc-cb2+a2c+b2c-abc
=0
Chúc học tốt!!!!
Cho a+b+c =0 rút gọn biểu thức: M=a3 + b3 + a2c + b2c - abc
\(A^3+B^3+A^2C+B^2C-ABC\)
\(=\left(A+B\right)\left(A^2-AB+B^2\right)+C\left(A^2-AB+B^2\right)\)
\(=\left(A^2-AB+B^2\right)\left(A+B+C\right)\)
\(=\left(A^2-AB+B^2\right).0\)
\(=o\)
Cho a+b+c=0 (abc khác 0). Rút gọn biểu thức:
Q= a^2/a^2-b^2-c^2 + b^2/b^2-c^2-a^2 + c^2/c^2-a^2-b^2
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
Cho . Rút gọn biểu thức
Ta có: \(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)
\(M=\left(a+b+c\right)\left(a^2+b^2-ab\right)\)
\(M=0.\left(a^2+b^2-ab\right)\)
\(M=0\)
Vậy \(M=0\)
Cho 3 số khác 0 a, b, c và a+b+c=0. Rút gọn biểu thức: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)
cho a, b, c thỏa mãn a khác +-1 và abc=1
Rút gọn biểu thức M=ab+bc+ca-a-b-c /a^2b -a^2-b+1
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
Cho a+b+c=0 (a khác 0, b khác 0, c khác 0). Rút gọn các biểu thức: \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)
\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
Cho hai biểu thức và a) Tính giá trị biểu thức A tại x = 4 b) Rút gọn biểu thức B c) Đặt P = A : B. Tìm x để P >0