(2x+5/3).(5/4-x)=0
1) (x + 1/2).(2/3 - 2x) = 0 2) 2/3x + 1/2x = 5/2 : 3 và 3/4 3) (2x - 3)(6 - 2x)= 0 4) -5(x + 1/5) - 1/2(x - 2/3) = 3/2x - 5/6
1: =>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
2: =>7/6x=5/2:3,75=2/3
=>x=2/3:7/6=2/3*6/7=12/21=4/7
3: =>2x-3=0 hoặc 6-2x=0
=>x=3 hoặc x=3/2
4: =>-5x-1-1/2x+1/3=3/2x-5/6
=>-11/2x-3/2x=-5/6-1/3+1
=>-7x=-1/6
=>x=1/42
a) 2x-1/11+2x-2/12+2x-3/13=2x+5/5+2x+6/4+2x+7/3
b) x-1/2016+x-2/2015+x-3/2014+x-4/2013+x-5/2012 -5=0
c) x+2017/2+x+2015/3+x+2013/4+x+2011/5+8=0
( x-5 ) . ( 3 - x ) = 0
( 2x - 8 ) . ( 5-x ) =0
7x ( 2x -14 ) = 0
(2x-4) . ( 6-2x) =0
`#3107.\text {DN01012007}`
\(\left(x-5\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0+5\\x=3-0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy, \(x\in\left\{3;5\right\}\)
_______
\(\left(2x-8\right)\cdot\left(5-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-8=0\\5-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=8\\x=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\div2\\x=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy, \(x\in\left\{4;5\right\}\)
_______
\(7x\left(2x-14\right)=0\\ \Rightarrow\left[{}\begin{matrix}7x=0\\2x-14=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x=14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=14\div2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Vậy, \(x\in\left\{0;7\right\}\)
______
\(\left(2x-4\right)\cdot\left(6-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\6-2x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=4\\2x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\div2\\x=6\div2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy, \(x\in\left\{2;3\right\}.\)
a) (2x +1)(3 – x)(4 - 2x) = 0 b)2x(x – 3) + 5(x – 3) = 0
c) (x2 – 4) – (x – 2)(3 – 2x) = 0 d) x2 – 5x + 6 = 0
e) (2x + 5)2 = (x + 2)2 f) 2x3 + 6x2 = x2 + 3x
a: (2x+1)(3-x)(4-2x)=0
=>(2x+1)(x-3)(x-2)=0
hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)
b: 2x(x-3)+5(x-3)=0
=>(x-3)(2x+5)=0
=>x=3 hoặc x=-5/2
c: =>(x-2)(x+2)+(x-2)(2x-3)=0
=>(x-2)(x+2+2x-3)=0
=>(x-2)(3x-1)=0
=>x=2 hoặc x=1/3
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
e: =>(2x+5+x+2)(2x+5-x-2)=0
=>(3x+7)(x+3)=0
=>x=-7/3 hoặc x=-3
f: \(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)
1,x=3x2
2,(x+5)(x-3)-(x-30)=0
3,(2x-6)(x+4)+2(2x-6)=0
4,(2x-5)(x+9)+6x-15=0
3,(2x-5)(x+6)+8x-20=0
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
Tìm x
(2x-7)+17=6
12-2.(3-3x)=-2
-14+3.(-x+5)=-20
-90:5.(-3-2x)=6
(x+1).(x-3)=0
(2x-2).(x+4)=0
(22+4).(x+3)=0
(5-x).(6-2x)=0
3.(x+1)+5=x+8
-4.(2x+9)-(-8x+3)-(x+13)=0
(2x - 7) + 17 = 6
=> 2x - 7 = 6 - 17
=> 2x - 7 = -11
=> 2x = -11 + 7
=> 2x = -4
=> x = -4 : 2
=> x = -2
+) 12 -2(3 - 3x)= -2
=> 2(3 - 3x) = 12 + 2
=> 2(3 - 3x) = 14
=> 3 - 3x = 14 : 2
=> 3 - 3x = 7
=> 3x = 3 - 7
=> 3x = -4
=> x = -4/3
\(\left(x+1\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy...
\(\left(2x-7\right)+17=6\)
\(\left(2x-7\right)=6-17\)
\(2x-7=-11\)
\(2x=-11+7\)
\(2x=-4\)
\(x=-4:2\)
\(\Rightarrow x=-2\)
\(V\text{ậy x = -2}\)
Bài 1:Giải phương trình sau:
1, x-8=3-2 (x+4)
2, 2 (x+3)-3 (x-1)=2
3, 4(x-5)-(3x-1)=x-19
4, 7-(x-2)=5 (2x-3)
5, 32-4(0,5y-5)=3y +2
6, 3 (x-1)-x=2x-3
Bài 2: Giải phương trình sau:
1, 2-x/3=3-2x/5
2, 3-4x/4=x+2/5
3, 2x-1/3+x=x+4/2
4, 1+2x-5/6=3-x/4
5, x-3/5+1-2x/3=-6
6, 3x-5/5+x/4=1/20
Bài 3: Giải các phương trình sau:
1, x^2-7x=0
2, 2x(x+3)+5(x+3)=0
3, 3x(x-1)+6 (x-1)=0
4, 3x(2x-8)-(2x-8)^2=0
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
Giải các phương trình sau :
1.(2x+1).(x2+2)=0
2.(x2+4).(7x-3)=0
3.(x-5).(3-2x).(3x+4)=0
4.(x-2).(3x+5)=(2x-4).(x+1)
5.(2x+5).(x-4)=(x-5).(4-x)
Giúp mình với
1.
\((2x+1)(x^2+2)=0\Rightarrow \left[\begin{matrix} 2x+1=0\\ x^2+2=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x^2=-2< 0(\text{vô lý})\end{matrix}\right.\)
Vậy \(x=-\frac{1}{2}\)
2.\((x^2+4)(7x-3)=0\Rightarrow \left[\begin{matrix} x^2+4=0\\ 7x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-4< 0(\text{vô lý})\\ x=\frac{3}{7}\end{matrix}\right.\)
Vậy \(x=\frac{3}{7}\)
3.
\((x-5)(3-2x)(3x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ 3-2x=0\\ 3x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=\frac{3}{2}\\ x=-\frac{4}{3}\end{matrix}\right.\)
4.
\((x-2)(3x+5)=(2x-4)(x+1)\)
\(\Leftrightarrow (x-2)(3x+5)-(2x-4)(x+1)=0\)
\(\Leftrightarrow (x-2)(3x+5)-2(x-2)(x+1)=0\)
\(\Leftrightarrow (x-2)[(3x+5)-2(x+1)]=0\)
\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)
5.
\((2x+5)(x-4)=(x-5)(4-x)\)
\(\Leftrightarrow (2x+5)(x-4)-(x-5)(4-x)=0\)
\(\Leftrightarrow (2x+5)(x-4)+(x-5)(x-4)=0\)
\(\Leftrightarrow (x-4)[(2x+5)+(x-5)]=0\)
\(\Leftrightarrow (x-4).3x=0\)
\(\Rightarrow \left[\begin{matrix} x-4=0\\ 3x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=0\end{matrix}\right.\)
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
1. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{x-1}=5-\sqrt{x-4}$
$\Rightarrow x-1=25+x-4-10\sqrt{x-4}$
$\Leftrightarrow 22=10\sqrt{x-4}$
$\Leftrightarrow 2,2=\sqrt{x-4}$
$\Leftrightarrow 4,84=x-4\Leftrightarrow x=8,84$
(thỏa mãn)
2. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow (2x-2\sqrt{x})-(5\sqrt{x}-5)=0$
$\Leftrightarrow 2\sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0$
$\Leftrightarrow (\sqrt{x}-1)(2\sqrt{x}-5)=0$
$\Leftrightarrow \sqrt{x}-1=0$ hoặc $2\sqrt{x}-5=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{25}{4}$ (tm)
3. ĐKXĐ: $x\geq 3$
Bình phương 2 vế thu được:
$3x-2+2\sqrt{(2x+1)(x-3)}=4x$
$\Leftrightarrow 2\sqrt{(2x+1)(x-3)}=x+2$
$\Leftrightarrow 4(2x+1)(x-3)=(x+2)^2$
$\Leftrightarrow 4(2x^2-5x-3)=x^2+4x+4$
$\Leftrightarrow 7x^2-24x-16=0$
$\Leftrightarrow (x-4)(7x+4)=0$
Do $x\geq 3$ nên $x=4$
Thử lại thấy thỏa mãn
Vậy $x=4$
4. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+2021\sqrt{x-4}=0$
$\Leftrightarrow (\sqrt{x}-2)^2+2021\sqrt{x-4}=0$
Ta thấy, với mọi $x\geq 4$ thì:
$(\sqrt{x}-2)^2\ge 0$
$2021\sqrt{x-4}\geq 0$
Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)