Cho 4x-3y=7. Tìm gia trị nhỏ nhất của \(2x^2+5y^2\)
1) Cho x+2y=1. Tìm giá trị nhỏ nhất của x2+2y2
2) Cho 4x-3y=7. Tìm giá trị nhỏ nhất của 2x2+5y2
Tìm giá trị nhỏ nhất của B=2x2+5y2 biết 4x-3y=7
Ta có: \(4x-3y=7\) => \(4x=3y+7\)
=> \(x=\dfrac{3y+7}{4}\)
=> \(x^2=\left(\dfrac{3y+7}{4}\right)^2\)
=> \(2x^2=\dfrac{\left(3y+7\right)^2}{8}\) (1)
Thay (1) vào B ta có:
B = \(\dfrac{\left(3y+7\right)^2}{8}+5y^2\) = \(\dfrac{9y^2+42y+49+40y^2}{8}\)
= \(\dfrac{49y^2+42y+9+40}{8}\)
= \(\dfrac{\left(7y+3\right)^2}{8}+5\)
Vì \(\dfrac{\left(7y+3\right)^2}{8}\) \(\ge\) 0 => \(\dfrac{\left(7y+3\right)^2}{8}+5\) \(\ge\) 5
=> Dấu bằng xảy ra <=> \(\dfrac{\left(7y+3\right)^2}{8}\) = 0
<=> \(7y+3=0\) <=> \(y=\dfrac{-3}{7}\) => \(x=\dfrac{10}{7}\)
=> GTNN của B = 5 khi \(x=\dfrac{10}{7};y=\dfrac{-3}{7}\)
Cho hai số thực x,y thỏa mãn điều kiện:`x^4+y^4+6x^2y^2+2=2x^2+3y^2`
Tính giá trị lớn nhất và nhỏ nhất của `P=(-6x^2-5y^2-4x^2y^2-7)/(x^2+y^2+1)`
Thầy Lâm cứu em :<<
\(a^2+b^2+6ab+2=2a+3b\Rightarrow\left(a+b\right)^2-3\left(a+b\right)+2=-a\left(4b+1\right)\le0\)
\(\Rightarrow\left(a+b-1\right)\left(a+b-2\right)\le0\Rightarrow1\le a+b\le2\)
\(a^2+b^2+6ab+2=2a+3b\Rightarrow4ab=-\left(a+b\right)^2+2a+3b-2\)
\(-P=\dfrac{6a+5b+4ab+7}{a+b+1}=\dfrac{6a+5a+7-\left(a+b\right)^2+2a+3b-2}{a+b+1}\)
\(=\dfrac{-\left(a+b\right)^2+8\left(a+b\right)+5}{a+b+1}\)
Tới đây có thể giải theo lớp 9 (tách thành tích hoặc bình phương) hoặc làm theo lớp 12 (khảo sát hàm \(f\left(x\right)=\dfrac{-x^2+8x+5}{x+1}\) trên \(\left[1;2\right]\)). Cả 2 việc đều dễ dàng cả
\(-P=6-\dfrac{\left(x-1\right)^2}{x+1}=\dfrac{17}{3}+\dfrac{\left(3x-1\right)\left(2-x\right)}{3\left(x+1\right)}\)
Cho 4x-3y=7 Tìm GTNN của 2x^2+5y^2
Tìm giá trị nhỏ nhất a) A=2x^2-3x-7+4y^2-8y b) B=x^2+5y^2-6x+2+4y c) C=x^2+3y^2-xy+5-2y
a) Ta có:
\(A=2x^2-3x-7+4y^2-8y=2\left(x^2-2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\left(2y\right)^2-2.2y.2+4-\dfrac{97}{8}\)\(\Leftrightarrow A=2\left(x-\dfrac{3}{4}\right)^2+\left(2y-2\right)^2-\dfrac{97}{8}\ge0+0-\dfrac{97}{8}=\dfrac{-97}{8}\)
Vậy \(A_{min}=\dfrac{-97}{8}\), đạt được khi và chỉ khi \(x=\dfrac{3}{4},y=1\)
tìm giá trị nhỏ nhất
B = 5x2 + y2 biết x + y = 1
C = x2 + 2y2 biết x + 2y = 1
D = 2x2 + 5y2 biết 4x - 3y = 7
Tìm giá trị nhỏ nhất
D=5x2+8xy+5y2-2x+2y
E=2x2+4y2-4xy-4x-4y+2016
F=x2+xy+y2-3x-3y+1989
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
Ta có: 2E = 4x2 + 8y2 - 8xy - 8x - 8y + 4006
2E = ( 4y - x - 1)2 + x2 - 6x + 4003
2E = ( 4y - x - 1)2 + ( x - 3)2 + 4003 - 9
E = \(\frac{1}{2}\).( 4y - x - 1)2 +\(\frac{1}{2}\).( x - 3 )2 + 1997 \(\ge\)1997
Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\)x = 3
4x - x -1 = 0 \(\Leftrightarrow\)y = 1
Vậy GTNN của E = 1997 khi x = 3 ; y = 1
tìm giá trị nhỏ nhấy của
c=2x2+5y2+4xy-4x+2y+7
C = 2x2 + 5y2 + 4xy - 4x + 2y + 7
= (x2 + 4xy + 4y2) + (x2 - 4x + 4) + (y2 + 2y + 1) + 2
= (x + 2y)2 + (x - 2)2 + (y + 1)2 + 1 >= 1
GTNN của C là 1
Cho \(4x-3y=7\). tìm GTNN của \(2x^2+5y^2\)
\(4x-3y=7\Leftrightarrow x=\frac{3y+7}{4}\)
Thay vào ta được :
\(2\cdot\left(\frac{3y+7}{4}\right)^2+5y^2\)
\(=\frac{9y^2+42y+49}{8}+\frac{40y^2}{8}\)
\(=\frac{49y^2+42y+49}{8}\)
\(=\frac{\left(7y\right)^2+2\cdot7y\cdot3+3^2+40}{8}\)
\(=\frac{\left(7y+3\right)^2+40}{8}\ge\frac{40}{8}=5\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{10}{7}\\y=-\frac{3}{7}\end{cases}}\)
thay y = \(\frac{4x-7}{3}\)vào A = 2x2 + 5y2 , ta được
9A = 98x2 - 280x + 245 = 2 . ( 7x - 10 )2 + 45 \(\ge\)45
\(\Rightarrow\)A \(\ge\)5
Vậy min A = 5 \(\Leftrightarrow x=\frac{10}{7};y=-\frac{3}{7}\)