Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh nguyen phan khanh

Tìm giá trị nhỏ nhất của B=2x2+5y2 biết 4x-3y=7

Mỹ Duyên
20 tháng 5 2017 lúc 15:15

Ta có: \(4x-3y=7\) => \(4x=3y+7\)

=> \(x=\dfrac{3y+7}{4}\)

=> \(x^2=\left(\dfrac{3y+7}{4}\right)^2\)

=> \(2x^2=\dfrac{\left(3y+7\right)^2}{8}\) (1)

Thay (1) vào B ta có:

B = \(\dfrac{\left(3y+7\right)^2}{8}+5y^2\) = \(\dfrac{9y^2+42y+49+40y^2}{8}\)

= \(\dfrac{49y^2+42y+9+40}{8}\)

= \(\dfrac{\left(7y+3\right)^2}{8}+5\)

\(\dfrac{\left(7y+3\right)^2}{8}\) \(\ge\) 0 => \(\dfrac{\left(7y+3\right)^2}{8}+5\) \(\ge\) 5

=> Dấu bằng xảy ra <=> \(\dfrac{\left(7y+3\right)^2}{8}\) = 0

<=> \(7y+3=0\) <=> \(y=\dfrac{-3}{7}\) => \(x=\dfrac{10}{7}\)

=> GTNN của B = 5 khi \(x=\dfrac{10}{7};y=\dfrac{-3}{7}\)