Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Phương Trần Ngọc
Xem chi tiết
Yuuki Asuna
29 tháng 11 2016 lúc 16:12

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

Yuuki Asuna
29 tháng 11 2016 lúc 16:18

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

Lê Quý Vượng
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 17:41

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

tuyết linh
Xem chi tiết
dovinh
8 tháng 11 2019 lúc 21:06

phải là :

A= \(7+7^2+7^3+...+7^{99}+7^{100}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{99}+7^{100}\right)\)

\(=7.\left(1+7\right)+7^3.\left(1+7\right)+...+7^{99}.\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{99}.8\\ =8.\left(7+7^3+7^{99}\right)\\ \Rightarrow A⋮8\)

Vậy \(A⋮8\)

Khách vãng lai đã xóa
tuyết linh
8 tháng 11 2019 lúc 21:13

Cho A=7^1+7^2+7^3+7^4+...+7^99+7^100. Chứng tỏ A chia hết cho 8.

Khách vãng lai đã xóa
Nguyen Ngoc Tram
Xem chi tiết
Hoàng Tony
23 tháng 11 2016 lúc 18:56

Có \(A=7^1+7^2+7^3+...+7^{99}+7^{100}=\left(7^1+7^2\right)+\left(7^3+7^4\right)+...\left(7^{99}+7^{100}\right)\)

\(\Leftrightarrow A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{99}\left(1+7\right)=7.8+7^3.8+...+7^{99}.8=8\left(7+7^3+...+7^{99}\right)\)

Vì \(8\left(7+7^3+...+7^{99}\right)\)chia hết cho 8 nên \(A\)chia hết cho 8 (ĐPCM)

  __cho_mình_nha_chúc_bạn_học _giỏi__ 

Triều Trần Nguyễn Hải
Xem chi tiết
Toru
27 tháng 10 2023 lúc 19:52

\(A=7+7^2+7^3+...+7^8\\=(7+7^2)+(7^3+7^4)+...+(7^7+7^8)\\=7\cdot(1+7)+7^3\cdot(1+7)+...+7^7\cdot(1+7)\\=7\cdot8+7^3\cdot8+...+7^7\cdot8\\=8\cdot(7+7^3+...+7^7)\)

Vì \(8\cdot(7+7^3+...+7^7)\vdots8\)

nên \(A\vdots8\)

Võ Ngọc Phương
27 tháng 10 2023 lúc 19:52

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^7+7^8\right)\)

\(A=56+7^2.\left(7+7^2\right)+...+7^6.\left(7+7^2\right)\)

\(A=56+7^2.56+...+7^6.56\)

\(A=56.\left(1+7^2+...+7^6\right)\)

Vì \(56⋮8\) nên \(56.\left(1+7^2+...+7^6\right)⋮8\)

Vậy \(A⋮8\)

\(#WendyDang\)

Minh Nguyệt
Xem chi tiết
nguyen duc thang
22 tháng 12 2017 lúc 12:48

A = 73 + 74 + 75 + 76 + ... + 797 + 798

A = ( 73 + 74 ) + ( 75 + 76 ) + .... + ( 797 + 798 )

A = 73 . ( 1 + 7 ) + 75 . ( 1 + 7 ) + ... + 797 . ( 1 + 7 )

A = 73 . 8 + 75 . 8 + .... + 797 . 8

A= 8 . ( 73 + 75 + ..... + 797 \(⋮8\)

Vậy A \(⋮8\)( dpcm )

Nguyễn Thị Phương Thảo
Xem chi tiết
Isolde Moria
12 tháng 11 2016 lúc 16:29

Ta có :

\(A=7^3+7^4+....+7^{98}\)

\(\Rightarrow A=7^3\left(1+7\right)+......+7^{97}\left(1+7\right)\)

\(\Rightarrow A=7^3.8+......+7^{97}.8\)

=> A chia hết cho 8

gia an le ngoc
Xem chi tiết
Dương Lam Hàng
10 tháng 11 2018 lúc 21:35

\(B=4+4^2+4^3+...+4^{20}\)

     \(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)

       \(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)

         \(=5.\left(4+4^3+...+4^{19}\right)⋮5\)

Vậy B chia hết cho 5

\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)

     \(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)

       \(=7.8+7^3.8+...+7^{19}.8\)

        \(=8.\left(7+7^3+...+7^{19}\right)⋮8\)

Vậy C chia hết cho 8

Hà Chí Công
25 tháng 11 2021 lúc 20:15

mình chưa học đến thông cảm nhé

Khách vãng lai đã xóa
Nguyễn Thu Hà
Xem chi tiết