Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Viết Nam
Xem chi tiết
Hung Hung
5 tháng 11 2016 lúc 21:32

Theo đề ra ta có 

\(\hept{\begin{cases}A-B=40\\A+B=90\end{cases}\Leftrightarrow\hept{\begin{cases}A=40+B\\40+B+B=90\end{cases}}}\)

\(\Rightarrow B=25\)

\(\Rightarrow A=65\)

Hung Hung
5 tháng 11 2016 lúc 21:32

Do 2 góc của một tam giác vuông nên bằng 90 độ đó na 

lethanhtra
12 tháng 10 2019 lúc 21:46

Chị tớ bảo là sai rồi , hai góc có cạnh tương ứng cơ mà , sao chắc chắn bằng 90 độ đc 

Thiều Vũ
Xem chi tiết
Ben 10
16 tháng 9 2017 lúc 19:49

làm tương tự

Bài 1 Cho tam giác ABC có góc A= 40 độ,AB=AC.Gọi M Là trung điểm của BC tính các góc của mỗi tam giác AMB và tam giác AMC

bài làm

Bài 1:
-Vì M là trung điểm nên CM=BM
-Vì AM chung và theo GT AB=AC nên Tam giác ABM=tam giac ACM
Góc A=40 độ=>Góc MAB=MAC=20
Vì góc AMB+góc AMC=180 độ(2 góc kề bù) mà góc AMB=AMC nên AMB=AMC=90 độ(2 góc tương ứng)
=>góc ABM=góc ACM=70 độ
Vậy Góc A=Góc C=70 độ
Góc AMC=góc AMB=90 độ
Góc CAM=góc BAM=20 độ
Thanks nhá

Thiên Tỉ ca ca
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 12:55

a) Các tia Om, On tương ứng là tia phân giác của góc yOz và xOz vì:

Tia Om nằm trong góc yOz và \(\widehat {yOm} = \widehat {mOz}\)

Tia On nằm trong góc xOz và \(\widehat {xOn} = \widehat {nOz}\)

b) Vì các tia Om, On tương ứng là tia phân giác của góc yOz và xOz nên: \(\widehat {yOm} = \widehat {mOz} = \frac{1}{2}.\widehat {yOz};\widehat {xOn} = \widehat {nOz} = \frac{1}{2}.\widehat {xOz}\)

Mà tia Oz nằm trong góc xOy nên \(\widehat {yOz} + \widehat {xOz} = \widehat {xOy}\)

\( \Rightarrow \widehat {mOz} + \widehat {zOn} = \frac{1}{2}.\widehat {yOz} + \frac{1}{2}.\widehat {xOz} = \frac{1}{2}.\widehat {xOy}\)

Mà tia Oz nằm trong góc mOn nên \(\widehat {mOz} + \widehat {zOn} = \widehat {mOn}\) và \(\widehat {xOy} = 90^\circ \)

\( \Rightarrow \widehat {mOn} = \frac{1}{2}.90^\circ  = 45^\circ \)

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 11:23

Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)

Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)

Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)

Nguyễn hữu phước
24 tháng 9 2021 lúc 10:19

$\widehat{ABC}$

Ely Trần
Xem chi tiết
Minh Pham
12 tháng 10 2017 lúc 16:46

vi a+b=90 nen a=(90+40):2=65 do

b=65-40=25

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:47

Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)

Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)

Mai Đức Việt Hà
Xem chi tiết
dream XD
Xem chi tiết
Akai Haruma
25 tháng 3 2021 lúc 20:35

Lời giải:

$\widehat{DAC}=\widehat{BAC}-\widehat{BAE}-\widehat{EAD}=90^0-20^0-30^0=40^0$