Cho đường tròn (O) ngoại tiếp tam giác đều ABC và điểm M thuộc cung nhỏ BC (M khác B và C). Tính số đo góc BMC.
Cho tam giác ABC, góc A= α; phân giác trong của góc B và góc C gặp nhau ở M. phân giác ngoài của góc B và góc C gặp nhau ở N
a) Tính góc BMC và góc BNC theo α
b) c/m B,M,C,N thuộc đường tròn tâm O. Tìm vị trí của O
c) Tính số đo cung BMC và số đo cung BNC của (O)
a: BM là phân giác của góc ABC
=>\(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)
CM là phân giác của góc ACB
=>\(\widehat{ACM}=\widehat{MCB}=\dfrac{\widehat{ACB}}{2}\)
Xét ΔMBC có \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)
=>\(\widehat{BMC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=180^0\)
=>\(\widehat{BMC}+\dfrac{180^0-\widehat{BAC}}{2}=180^0\)
=>\(\widehat{BMC}+\dfrac{180^0-a}{2}=180^0\)
=>\(\widehat{BMC}=180^0-90^0+\dfrac{a}{2}=\dfrac{a}{2}+90^0\)
Vì BM,BN lần lượt là phân giác trong và phân giác ngoài tại đỉnh B của ΔABC nên BM\(\perp\)BN
=>\(\widehat{MBN}=90^0\)
Vì CM,CN lần lượt là phân giác trong và phân giác ngoài tại đỉnh C của ΔABC nên CM\(\perp\)CN
=>\(\widehat{MCN}=90^0\)
Xét tứ giác BMCN có \(\widehat{BMC}+\widehat{BNC}+\widehat{MBN}+\widehat{MCN}=360^0\)
=>\(\widehat{BNC}+90^0+\dfrac{a}{2}+90^0+90^0=360^0\)
=>\(\widehat{BNC}=90^0-\dfrac{a}{2}\)
b: Xét tứ giác BMCN có \(\widehat{MBN}+\widehat{MCN}=90^0+90^0=180^0\)
nên BMCN là tứ giác nội tiếp đường tròn đường kính MN
=>B,M,C,N cùng thuộc đường tròn tâm O đường kính MN
Tâm O là trung điểm của MN
Cho tam giác ABC, góc A= α; phân giác trong của góc B và góc C gặp nhau ở M. phân giác ngoài của góc B và góc C gặp nhau ở N
a) Tính góc BMC và góc BNC theo α
b) c/m B,M,C,N thuộc đường tròn tâm O. Tìm vị trí của O
c) Tính số đo cung BMC và số đo cung BNC của (O)
cho tam giác đều ABC nội tiếp (O) . Đường cao AH cắt cung nhỏ BC tại M .Số đo góc BMC =?
Cho tam giác đều ABC, (O) là đường tròn ngoại tiếp tam giác ABC. Điểm M thay đổi, thuộc cung nhỏ AC của đường tròn tâm (O) ( M khác A và C). CM cắt AB tại E, AM cắt BC tại F. Qua A kẻ đường thẳng song song với BC cắt đường thẳng EF tại D, Chứng minh EF luôn đi qua điểm D cố định khi M thay đổi
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O.
Gọi M là một điểm trên cung nhỏ B C ⏜ (M khác B; C và AM không đi qua O).
Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
2). Đường tròn đường kính MP cắt MD tại điểm Q khác M. Chứng minh rằng P là tâm đường tròn nội tiếp tam giác AQN.
2) Tứ giác APQD nội tiếp ( P Q D ^ = M A D ^ = 90 0 ),
suy ra P A Q ^ = P D Q ^ = N D M ^ (3).
Xét (O), ta có N D M ^ = N A M ^ (4).
Từ (3) và (4) P A Q ^ = N A P ^ , suy ra AP là phân giác của góc N A Q ^ (*).
Xét (O), ta có A N D ^ = A M D ^ .
Xét đường tròn đường kính MP có Q M P ^ = Q N P ^ ⇒ A N P ^ = Q N P ^ , nên NP là phân giác của góc ANQ (**).
Từ (*) và (**), suy ra P là tâm đường tròn nội tiếp tam giác ANQ
Cho tam giác ABC đều ngoại tiếp (O), M là một điểm bất kì trên cung nhỏ BC, AM giao BC tại D. Chứng minh rằng:
a, MA=MB+MC
b, MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ADC
c, Khi điểm M di chuyển trên cung nhỏ BC thì tổng 2 bán kính của 2 đường tròn ngoại tiếp tam giác ABD và ACD không đổi
cho đường tròn o và dây cung ab với góc aob=120 hai tiếp tuyến tại a và b của đường tròn o cắt nhau tại c
a)CM tam giác abc là tam giác đều và tính diện tích abc theo R
b)lấy m thuộc cung nhỏ ab của đường tròn. vẽ tiếp tuyến m cắt ac và bc tại d và e. CM ad+be=de
c)CM GÓC dce=doe
Cho tam giác ABC nội tiếp đường tròn (O) có BC cố định (BC < 2R). Đỉnh A thay đổi sao cho tam giác ABC nhọn. Đường tròn (B;BA) cắt AC và (O) lấn lượt ở D và E. DE cắt (O) tại K khác E .
a) chứng minh : BK vuông góc AC
b) Gọi F của DK và AE, Mlà giao điểm của AC với đường tròn ngoại tiếp tam giác DEF. Chứng minh điểm M thuộc đường thẳng cố định
c) Khi tam giác ABC đều cạnh a và điểm N thuộc BC sao cho BC=3BN. Lấy P,Q lần lượt thuộc AB,A C sao cho tam giác NQP có chu vi nhỏ nhất. Tính chu vi tam giác NQP theo a.
cho tam giác ABC đều nội tiếp đường tròn tâm (o). Các tiếp tuyến tại B và C của đường tròn tâm (o) cắt nhau tại M Số đo góc BMC bằng
Bài này khá căn bản thôi do tam giác ABC đều
`=>hatA=hatB=hatC=60^o`
`\hat{BOC}` là góc ở tâm nên gấp 2 lần góc nội tiếp
`=>hat{BOC}=2hatA=120^o`
Vì `hat{OBM}=hat{OCM}=90^o`(do các tt lần lượt lại B,C)
`hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC}=360^o`( đây là tứ giác)
`=>hat{BMC}=360^o-(hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC})=60^o`
ΔABC đều ⇒∠A=∠B=∠C=60
⇒∠BOC=2∠A=2.60=120
mà ∠BOC+∠BMC=180 (∠B=∠C=90)
⇒∠BMC=180-∠BOC=180-120=60
⇒∠BMC=60
Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.
a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?
b) Xác định vị trí của C trên nửa đường tròn tâm O để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với (O).
Bài 12: Cho tứ giác ABCD có đường chéo BD không là phân giác của góc ABC và góc CDA.Một điểm P nằm trong tứ giác sao cho góc PBC=góc DBA; góc PDC = góc BDA.Chứng minh rằng tứ giác ABCD nội tiếp khi và chỉ khi AP=CP
Bài 13:Cho tam giác ABC có chu vi bằng 2p không đổi ngoại tiếp 1 đường tròn(O).Dựng tiếp tuyến MN với (O) sao cho MN song song với AC;M thuộc cạnh AB,N thuộc cạnh BC.Tính AC theo p để độ dài đoạn MN đạt giá trị lớn nhất.
Bài 14: Trong một tam giác cho trước hãy tìm bán kính lớn nhất của hai đường tròn bằng nhau tiếp xúc ngoài nhau đồng thời mỗi đường tròn tiếp xúc với hai cạnh của tam giác đó.
Bài 15: Trên cạnh AB của tam giác ABC lấy một điểm D sao cho đường tròn nột tiếp tam giác ACD và BCD bằng nhau
a) Tính đoạn CD theo các cạnh của tam giác
b)CMR: Điều kiện cần và đủ để góc C = 90 độ là điện tích tam giác ABC bằng diện tích hình vuông cạnh CD
Bài 16: Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ,CD là cạnh đáy lớn,M là giao của AC và BD.Biết rằng hình thang ABCD ngoại tiếp đường tròn bán kính R.Tính diện tích tam giác ADM theo R
Bài 17:Cho tam giác ABC không cân,M là trung điểm cạnh BC,D là hình chiếu vuông góc của A trên BC; E và F tương ứng là các hình chiếu vuông góc của B và C trên đường kính đi qua A của đường tròn ngoại tiếp tam giác ABC.CMR: M là tâm đường tròn ngoại tiếp tam giác DEF
Bài 18: Cho đoạn thẳng AB, điểm C nằm giữa A và B, Tia Cx vuông góc với AB.Trên tia Cx lấy D và E sao cho CECB=CACD=3√CECB=CACD=3. Đường tròn ngoại tiếp tam giác ADC cắt đường tròn ngoại tiếp tam giác BEC tại H(H khác C). CMR: HC luôn đi qua một điểm cố định khi C chuyển động trên đoạn AB.Bài toán còn đúng không khi thay 3√3 bởi m cho trước(m>0)
Bài 19: Cho tam giác ABC nhọn và điểm M chuyện động trên đường thẳng BC.Vẽ trung trực của các đoạn BM và CM tương ứng cắt các đường thẳng AB và AC tại P và Q.CMR: Đường thẳng qua M và vuông góc với PQ đi qua 1 điểm cố định
Bài 20: Cho tam giác ABC và một đường tròn (O) đi qua A và C.Gọi K và N là các giao điểm của (O) với các cạnh AB,C.ĐƯờng tròn (O1) và (O2) ngoại tiếp tam giác ABC và tam giác KBN cắt nhau tại B và M.CMR: O1O2 song song với OM
Giúp t vs..^^^
làm hết dc đống bài này chắc mình ốm mất
Quá nhiều ! ai mà giải hết được chứ !