Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Bình

Cho tam giác ABC, góc A= α; phân giác trong của góc B và góc C gặp nhau ở M. phân giác ngoài của góc B và góc C gặp nhau ở N

a) Tính góc BMC và góc BNC theo α

b) c/m B,M,C,N thuộc đường tròn tâm O. Tìm vị trí của O

c) Tính số đo cung BMC và số đo cung BNC của (O)

Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 23:29

a: BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)

CM là phân giác của góc ACB

=>\(\widehat{ACM}=\widehat{MCB}=\dfrac{\widehat{ACB}}{2}\)

Xét ΔMBC có \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)

=>\(\widehat{BMC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=180^0\)

=>\(\widehat{BMC}+\dfrac{180^0-\widehat{BAC}}{2}=180^0\)

=>\(\widehat{BMC}+\dfrac{180^0-a}{2}=180^0\)

=>\(\widehat{BMC}=180^0-90^0+\dfrac{a}{2}=\dfrac{a}{2}+90^0\)

Vì BM,BN lần lượt là phân giác trong và phân giác ngoài tại đỉnh B của ΔABC nên BM\(\perp\)BN

=>\(\widehat{MBN}=90^0\)

Vì CM,CN lần lượt là phân giác trong và phân giác ngoài tại đỉnh C của ΔABC nên CM\(\perp\)CN

=>\(\widehat{MCN}=90^0\)

Xét tứ giác BMCN có \(\widehat{BMC}+\widehat{BNC}+\widehat{MBN}+\widehat{MCN}=360^0\)

=>\(\widehat{BNC}+90^0+\dfrac{a}{2}+90^0+90^0=360^0\)

=>\(\widehat{BNC}=90^0-\dfrac{a}{2}\)

b: Xét tứ giác BMCN có \(\widehat{MBN}+\widehat{MCN}=90^0+90^0=180^0\)

nên BMCN là tứ giác nội tiếp đường tròn đường kính MN

=>B,M,C,N cùng thuộc đường tròn tâm O đường kính MN

Tâm O là trung điểm của MN

 


Các câu hỏi tương tự
Minh Bình
Xem chi tiết
Đào Minh Nam
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
LuKenz
Xem chi tiết
Nguyễn Ngọc Châu
Xem chi tiết
Jennie Kim
Xem chi tiết
Nhi Lan
Xem chi tiết
LuKenz
Xem chi tiết
Nguyễn Ngọc Châu
Xem chi tiết