Cho tam giác đều ABC có cạnh bằng 3 cm và nội tiếp đường tròn (O) như Hình 9.26.
a) Tính bán kính R của đường tròn (O).
b) Tính diện tích hình viên phân giới hạn bởi dây cung BC và cung nhỏ BC.
Cho tam giác ABC nội tiếp đường tròn (O). Biết BC = 2cm , A =45^ . a. Tính diện tích hình tròn (O). b. Tính diện tích hình viên phân giới hạn bởi dây BC và cung nhỏ BC. C,Xác định vị trí của điểm A để diện tích tam giác ABC là lớn nhất. Tính diện tích lớn nhất đó .. Giúp tớ với
a: góc BOC=2*góc A=90 độ
=>OB^2+OC^2=BC^2
=>2*R^2=2^2=4
=>R=căn 2
\(S_{\left(O\right)}=R^2\cdot pi=2pi\left(cm^2\right)\)
b: \(S_{q\left(BOC\right)}=pi\cdot2\cdot\dfrac{90}{360}=\dfrac{1}{2}\cdot pi\left(cm^2\right)\)
\(S_{BOC}=\dfrac{1}{2}\cdot OB\cdot OC=\dfrac{1}{2}\cdot2=1\)
=>\(S_{viênphân}=\dfrac{1}{2}\cdot3.14-1=0.57\left(cm^2\right)\)
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình tròn giới hạn tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^0\)
\(\widehat{BAC}=60^o\Rightarrow\widehat{BOC}=120^o\). Diện tích cần tìm là \(\pi\).32-1/2.3.3.sin120o=9\(\pi\)-9\(\sqrt{3}\)/4 (cm2)\(\approx\)24,38 (cm2).
`a)` Ta có: `\hat{AHI}=\hat{AKI}=90^o`
`=>` Tứ giác `AHIK` nội tiếp đường tròn đường kính `AI`
`b)` Ta có: `\hat{COB}=2\hat{CAB}` (cùng chắn cung `BC`)
`=>\hat{COB}=2.60^o =120^o=[2\pi]/3(rad)`
`=>` Độ dài cung `BC` nhỏ là: `l=\hat{COB}.R=[2\pi R]/3`
`=>` Diện tích hình quạt giới hạn bởi `2` bán kính `OB;OC` và cung nhỏ `BC` là:
`S=[lR]/2=[R^2]/3`
Câu 3. (1,0 điểm) Cho tam giác ABC ( A = 60° ,AC<AB) nội tiếp đường tròn (O; R) Hai đường cao BH và CK cắt nhau tại I.
a/ Chứng minh tứ giác AHIK là tứ giác nội tiếp
b/Tính diện tích hình quạt giới hạn bởi hai bán kính OB, OC và cung nhỏ BC theo R
a: góc AHI=góc AKI=90 độ
=>AHIK nội tiếp
b: góc BOC=2*60=120 độ
\(S_{quạtBC}=pi\cdot R^2\cdot\dfrac{120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)
1. Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình quạt tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^o\)
2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm nội tiếp đường tròn (O). Tính diện tích hình tròn (O)
2: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
BC=căn 6^2+8^2=10cm
=>OB=OC=10/2=5cm
S=5^2*3,14=78,5cm2
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC). Hai đường cao AD, CE cắt nhau tại H
VẼ HÌNH VÀ GIẢI CHI TIẾT
Đề không rõ câu hỏi. Bạn xem lại.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC). Hai đường cao AD, CE cắt nhau tại H
a) Giả sử góc A =60. Tính độ dài cung nhỏ BC và diện tích viên phân giới hạn bởi dây BC và cung nhỏ BC theo R
b) Kẻ đường kính AK cắt CE tại M, CK cắt AD tại F. Chứng minh: tứ giác BEHD nội tiếp và AH.AF=AM.AK
c) Gọi I là trung điểm của BC; EI cắt AK tại N. Chứng minh tứ giác EDNC là hình thang cân
a: góc BOC=2*60=120 độ
độ dài cung nhỏ BC là:
l=pi*R*120/360=pi*R/3
S qBC=pi*R^2/3
S OBC=1/2*R*R*sinBOC=1/4R^2
=>S vp BC=R^2(pi/3-1/4)
b: góc BDH+góc BEH=180 độ
=>BDHE nội tiếp
1. Cho tam giác ABC có A= 60o nội tiếp trong đường tròn (O;R)
a) tính số đo cung BC
b) tính độ dài dây cung BC và độ dài cung BC theo R
c) tính diện tích hình quạt ứng với góc ở tâm BOC theo R
2. CHo (O;R) và dây AB= R\(\sqrt{2}\)
a) tính số đo cung AB, số đo góc AOB
b)| tính theo R độ dài cung AB
tính diện tích của hình viên phân giới hạn bởi dây AB và cung nhỏ AB theo R
Cho tam giác ABC nội tiếp đường tròn (O; 3cm). Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OC và cung nhỏ AC khi A B C ^ = 40 0
Cho tam giác ABC nội tiếp đường tròn (O;R) tia phân giác của góc BAC cắt (O) tại M. Vẽ đường cao AH và bán kính OA. Chứng minh
a,AM là phân giác của góc BOA
b, Giả sử góc B lớn hơn góc C. Chứng minh góc A= góc B - góc C
c, cho góc BAC= 60 độ và góc OAH = 20 độ .Tính góc B và góc C của tam giác BAC
tính diện tích hình viên phân giới hạn bởi dây BC và cung nhỏ BC theo R