Cho tam giác ABC nội tếp đường tròn (O; 6cm). Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OC và cung nhỏ AC khi A B C ^ = 60 0
Cho tam giác ABC vuông tại A .Trên cạnh AB lấy một điểm D dựng đường tròn (o) có đường kính BD đường thẳng CD cắt đường tròn tâm (o) tại E đường thẳng AE cắt đường tròn tâm (o)tạ F
a)c/m tứ giác ACBE nội tiếp xác định tâm G của đương ngoại tiếp tứ giác ACBE
B)C/M BA là tia phân giác CBF
C) cHO ACB bằng 60độ và AC bằng 3cm .tính diện tích hình quạt tròn giới hạn bởi 2 bán kính GA VÀ GB và cung nhỏ AB của đường tròn G
Cho đường tròn tâm O, bán kính R=3 cm và hai điểm A,B nằm trên đường tròn (O) sao cho số đo cung lớn bằng 240°. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OB vsf cung nhỏ AB.
Từ một điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC có B và C là hai tiếp điểm sao cho góc BOC = 1200 và cát tuyến AMN của đường tròn đó . Gọi I là trung điểm của dây MN.
a) Tính số đo cung nhỏ BC ?
b) Chứng minh tứ giác ABOC nội tiếp ?
c) Tính diện tích hình quạt tròn giới hạn bởi cung nhỏ AB theo R ?
d) Tính diện tích hình tròn ngoại tiếp tứ giác ABOC theo bán kính R khi AB=R ?
e) Chứng minh góc IOC = góc IAC ?
Cho đường tròn O R; và dây cung BC cố định không đi qua O. A là một điểm di động trên cung lớn BC AB AC sao cho tam giác ABC nhọn. Các đường cao BE CF , cắt nhau tại H . Gọi K là giao điểm của đường thẳng EF và đường thẳng BC . a) Chứng minh tứ giác BCEF nội tiếp, chỉ ra đường kính của đường tròn đó;
b) Chứng minh KB KC KE KF . . . Tính theo R , độ dài cung nhỏ BC và diện tích hình quạt giới hạn bởi bán kính OB OC , và cung nhỏ BC khi góc 0 BAC 60 ; c) Gọi M là giao điểm của AK với đường tròn O ( M khác A). Chứng minh MH vuông góc với AK và MH đi qua trung điểm của BC .Cho đường tròn (7; 2cm). Vẽ bán kính IA và IB sao cho A I B ^ = 120 0 . Hãy tính:
a, Độ dài cung nhỏ AB
b, Diện tích hình quạt tròn giới hạn bởi cung nhỏ AB và hai bán kính IA, IB
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R . Kẻ đường cao AD (D thuộc BC) và đường kính AK . Hạ BE và CF cùng vuông góc với AK ( E thuộc AK , F thuộc AK ).
1) chứng minh tứ giác ABDE nội tiếp.
2) Chứng minh DF song song với BK
3) cho góc ABC = 60 độ , R=4cm. Tính diện tích hình quạt giới hạn bởi OC , OK và cung nhỏ CK .
4) cho BC cố định , A chuyển động trên cung lớn Bc sao cho tam giác ABC có ba góc nhọn . Chứng minh tâm đường tròn ngoại tiếp tam giác DEF là một điểm cố định.
Cho đường tròn (O) đường kính AB. Lấy M thuộc đoạn AB. vẽ dây CD vuông góc với AB tại M. Giả sử AM = 2cm và CD = 4 3 cm. Tính:
a, Độ dài đường tròn (O) và diện tích đường tròn (O)
b, Độ dài cung C A D ⏜ và diện tích hình quạt tròn giói hạn bởi hai bán kính OC, OD và cung nhỏ C D ⏜
Cho tam giác ABC có góc ACB tù, H là chân đường cao vẽ từ A. Đường tròn đường kính BH cắt AB tại điểm thứ hai là D. Đường tròn đường kính CH cắt AC tại điểm thứ hai là E.
a) Chứng minh tứ giác ADEH là tứ giác nội tiếp.
b) Chứng minh góc EBH = góc EDC.
c) Cho BH = \(a\sqrt{3}\) CH = a, góc ABC = 450 . Tính diện tích hình quạt tròn giới hạn bởi cung EC và hai bán kính đi qua E và C của đường tròn đường kính CH