Giải pt: \(\dfrac{12}{x-1}-\dfrac{8}{x+1}=1\)
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+12}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)giải pt
Giúp tui với
Giải pt sau
\(\dfrac{1}{\text{x}^2+5x+6}\)+\(\dfrac{1}{\text{x}^2+7x+12}\)+\(\dfrac{1}{x^2+9x +12}\)+\(\dfrac{1}{\text{x}^2+9x+30}=\dfrac{1}{8}\)
Sửa lại đề nha:
\(\dfrac{1}{x^2+9x+12}thành\dfrac{1}{x^2+9x+20}\)
⇔ \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{4}{x^2+8x+12}=\dfrac{1}{8}\)
⇔ \(x^2+8x+12=32\)
⇔ \(x^2+8x-20=0\)
⇔ \(\left(x-2\right)\left(x+10\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
Giải PT sau:
\(1+\dfrac{1}{x+2}=\dfrac{12}{8-x^3}\)
Ta có : 1+\(\dfrac{1}{x+2}\) = \(\dfrac{12}{8-x^3}\) (đkxđ x\(\ne\pm2\) )
\(\Leftrightarrow\) \(\dfrac{1}{x+2}\) = \(\dfrac{12}{8-x^3}-1\)
\(\Leftrightarrow\)\(\dfrac{1}{x+2}=\dfrac{12-\left(8-x^3\right)}{8-x^3}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{x^3+4}{8-x^3}\)
\(\Leftrightarrow8-x^3=\left(x+2\right)\left(x^3+4\right)\)
\(\Leftrightarrow8-x^3=x^4+4x+2x^3+8\)
\(\Leftrightarrow-x^3-x^4-4x-2x^3=8-8\)
\(\Leftrightarrow-x^4-3x^3-4x=0\)
\(\Leftrightarrow-x\left(x^3+3x^2+4\right)=0\)
\(\Rightarrow-x=0\)\(\Rightarrow x=0\) (TM x\(\ne\pm2\))
Bài 1:
a) Giải PT sau: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
b) Giải PT sau: |2x+6|-x=3
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
\(\dfrac{1}{x}+\dfrac{1}{x+2}=\dfrac{5}{12}\)
giải pt ạ
`1/x+1/(x+2)=5/12`
ĐK:`x ne 0,x ne -2`
`<=>(x+2+x)/(x^2+2x)=5/12`
`<=>(2x+2)/(x^2+2x)=5/12`
`<=>24x+24=5x^2+10x`
`<=>5x^2-14x-24=0`
Ta có:`Delta'=49+24.5`
`=49+120=169`
`=>x_1=-6/5,x_2=4`
Vậy `S={4,-6/5}`
$ĐKXĐ : x \neq 0, x \neq -2$
Ta có : $\dfrac{1}{x} + \dfrac{1}{x+2} = \dfrac{5}{12}$
$\to \dfrac{2x+2}{x.(x+2)} = \dfrac{5}{12}$
$\to (2x+2).12 = x.(x+2).5$
$\to 24x + 24 = 5x^2 + 10x$
$\to 5x^2 - 14x - 24 = 0 $
$\to (x-4).(5x+6) = 0 $
S\to$ \(\left[{}\begin{matrix}x=4\\x=-\dfrac{6}{5}\end{matrix}\right.\) ( thỏa mãn ĐKXĐ )
Vậy :....
giải pt \(x+\dfrac{x}{\sqrt{x^2-1}}=\dfrac{35}{12}\)
Giải PT:
a. \(2x+\dfrac{x-1}{x}-\sqrt{1-\dfrac{1}{x}}-3\sqrt{x-\dfrac{1}{x}}=0\)
b.\(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)
b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)
\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)
Bình phương 2 vế rút gọn
\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)
Đặt \(\sqrt{x^4-x^2}=a\)
\(\Rightarrow a^2-4\sqrt{3}a+12=0\)
\(\Leftrightarrow a=2\sqrt{3}\)
\(\Leftrightarrow x^4-x^2=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Câu a xem lại đề đúng không b. Do nghiệm xấu lắm
Bài 2:giải các pt chứa ẩn ở mẫu sau:
a)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)
c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
d)\(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}=\dfrac{5-x}{2x^2+10x}\)
a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)
=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)
=>\(x^2+2x+1-x^2+2x-1=16\)
=>4x=16=>x=4
b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)
=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)
=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)
=>\(12-x^2-3x-2+x^2+5x-14=0\)
=>2x-4=0=>2x=4=>x=2
c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)
=>\(12=x^3+8+x^2-2x+4\)
=>\(x^3+x^2-2x=0\)
=>\(x^3-x+x^2-x=0\)
c)=>\(x\left(x^2-1\right)+x\left(x-1\right)=0\)
=>\(x\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
=>\(x\left(x-1\right)\left(x+2\right)=0\)
=>x=?
giải pt sau
a)\(\dfrac{60}{x}=\dfrac{4}{3}+\dfrac{60-x}{x+4}\)
b)\(\dfrac{100}{x}-\dfrac{100}{x+20}=\dfrac{5}{6}\)
c)\(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
Helppppp
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\) giải pt
\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\)
* x2 - 2x - 3 = x2- 3x + x - 3 = x(x-3 ) + ( x - 3) = ( x - 3 ) ( x + 1 )
\(\Leftrightarrow\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm3;x\ne-1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+8\left(x+3\right)=2x\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1+8x+24=2x^2+6x\)
\(\Leftrightarrow-x^2+25=0\)
\(\Leftrightarrow x^2-25=0\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{-5;5\right\}\)