`1/x+1/(x+2)=5/12`
ĐK:`x ne 0,x ne -2`
`<=>(x+2+x)/(x^2+2x)=5/12`
`<=>(2x+2)/(x^2+2x)=5/12`
`<=>24x+24=5x^2+10x`
`<=>5x^2-14x-24=0`
Ta có:`Delta'=49+24.5`
`=49+120=169`
`=>x_1=-6/5,x_2=4`
Vậy `S={4,-6/5}`
$ĐKXĐ : x \neq 0, x \neq -2$
Ta có : $\dfrac{1}{x} + \dfrac{1}{x+2} = \dfrac{5}{12}$
$\to \dfrac{2x+2}{x.(x+2)} = \dfrac{5}{12}$
$\to (2x+2).12 = x.(x+2).5$
$\to 24x + 24 = 5x^2 + 10x$
$\to 5x^2 - 14x - 24 = 0 $
$\to (x-4).(5x+6) = 0 $
S\to$ \(\left[{}\begin{matrix}x=4\\x=-\dfrac{6}{5}\end{matrix}\right.\) ( thỏa mãn ĐKXĐ )
Vậy :....