Tính và so sánh: \(\sqrt{100}:\sqrt{4}\) và \(\sqrt{100:4}\)
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
So sánh 2 số thực sau :
\(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\)và 3
có 100 dấu căn
Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.
Ta có:
\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn
\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)
\(\Leftrightarrow A^2-A-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)
Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)
mỗi lần mình đều xem hết danh sách câu hỏi tương tự mà không thấy.
Cảm ơn bạn nha!
mà tại sao a2 - a - 4 =0
99 dấu căn của 4 trừ 100 dấu căn của 4 sao = 0?
So sánh mà ko dùng máy tính:\(\sqrt{12+6\sqrt{ }3}\) và \(\sqrt{9+4\sqrt{ }5}\)
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)
Cho B = \(2\sqrt{3}+2\sqrt{5}+......+2\sqrt{99}\)và C = \(\sqrt{2}+2\sqrt{4}+.,.....+2\sqrt{98}+\sqrt{100}\). Hãy so sánh B và C
so sánh các số sau: a,\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}và\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\)
\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)
\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)
Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)
Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).
So sánh \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\) và \(19\)
Không sử dụng máy tính cầm tay, hãy so sánh các số sau:
a) \(\sqrt {42} \) và \(\sqrt[3]{{51}}\)
b) \({16^{\sqrt 3 }}\) và \({4^{3\sqrt 2 }}\)
c) \({(0,2)^{\sqrt {16} }}\) và \({\left( {0,2} \right)^{\sqrt[3]{{60}}}}\)
\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)
\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
1/ \(\sqrt[3]{54}-\sqrt[3]{16}\)
\(=\sqrt[3]{3^3\cdot2}-\sqrt[3]{2^3\cdot2}\)
\(=3\sqrt[2]{3}-2\sqrt[3]{2}\)
\(=\left(3-2\right)\sqrt[3]{2}\)
\(=\sqrt[3]{2}\)
So sánh ( không dùng bảng số hay máy tính bỏ túi)
a) 6 + 2$\sqrt{2}$ và 9
b) $\sqrt{2}+\sqrt{3}$ và 3
c) 9 + 4$\sqrt{5}$ và 16
d) $\sqrt{11}-\sqrt{3}$ và 2
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
So sánh
a) 5 và \(\sqrt{11}\)
b) \(\sqrt{13}\) và 4
c) -7 và -\(\sqrt{43}\)
d) -\(\sqrt{21}\) và -5
Mình chọn nhầm lớp 8 chứ thật ra câu hỏi ở bên lớp 9
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)