Cho tam giác ABC nhọn, AB=c, BC=a,CA=b
chứng minh:\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Cho tam giác ABC nhọn có BC=a, CA=b, AB=c
Chứng minh rằng: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
kẻ CH vuông góc AB
Ta có : \(\sin A=\frac{CH}{AC};\sin B=\frac{CH}{BC}\)
do đó : \(\frac{\sin A}{\sin B}=\frac{BC}{AC}=\frac{a}{b}\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}\)( 1 )
Tương tự : \(\frac{b}{\sin B}=\frac{c}{\sin C}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Cho tam giác nhọn ABC độ dài các cạnh BC, CA, AB lần lượt bằng a, b, c
a) Chứng minh: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) Chứng minh rằng nếu: a + b = 2c thì sinA + sinB = 2sinC
a) Ta có: \(bc.sinA=ca.sinB=ab.sinC\left(=2S_{ABC}\right)\Rightarrow b.sinA=a.sinB;c.sinB=b.sinC\Rightarrow\frac{a}{sinA}=\frac{b}{sinB};\frac{b}{sinB}=\frac{c}{sinC}\Rightarrowđpcm\)
b) Ta có: \(a+b=2c\Leftrightarrow\frac{a}{c}+\frac{b}{c}=2\).
Từ câu a ta suy ra \(\frac{a}{c}=\frac{sinA}{sinC};\frac{b}{c}=\frac{sinB}{sinC}\).
Do đó: \(\frac{sinA}{sinC}+\frac{sinB}{sinC}=2\Rightarrow sinA+sinB=2sinC\) (đpcm).
Cho tam giác ABC nhọn có BC = a, AC = b, AB = c .Chứng minh rằng:
a, \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b, Có thể xảy ra sinA = sinB + sinC không ?
Cho tam giác ABC nhọn , BC = a ; AC = b ; AB = c
C/m: \(\frac{a}{sina}=\frac{b}{sinb}=\frac{c}{sinc}\)
Vẽ \(AH\perp BC\)
Ta có: \(\Delta AHB\perp H\)
\(\Rightarrow SinB=\frac{AH}{c}\)
Ta có: \(\Delta AHC\perp H\)
\(\Rightarrow SinC=\frac{AH}{b}\)
\(\Rightarrow\frac{\sin B}{\sin C}=\frac{AH}{c}:\frac{AH}{b}=\frac{AH}{c}.\frac{b}{AH}=\frac{b}{c}\)
\(\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(1\right)\)
Vẽ \(BK\perp AC\)
Ta có \(\Delta BKC\perp K\)
\(\Rightarrow SinC=\frac{BK}{a}\)
Ta có: \(\Delta AKB\perp K\)
\(\Rightarrow SinA=\frac{BK}{c}\)
\(\Rightarrow\frac{\sin A}{\sin C}=\frac{BK}{c}:\frac{BK}{a}=\frac{BK}{c}.\frac{a}{BK}=\frac{a}{c}\)
\(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin C}\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)
1) Cho tam giác ABC có 3 goc nhọn và BC=a, CA=b, AB=c
C/m: \(\frac{a}{SinA}=\frac{b}{SinB}=\frac{c}{SinC}\)
1. cho tam giác abc nhọn có AB=c , AC=b , BC=a
c/m : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Kẻ đường cao AH vuông góc với BC (H \(\in\) BC)
Xét tam giác AHB vuông tại H ta có: \(\sin B=\frac{AH}{c}\Leftrightarrow AH=sinB\times c\) (1)
Xét tam giác AHC vuông tại H ta có: \(\sin C=\frac{AH}{b}\Leftrightarrow AH=\sin C\times b\) (2)
(1),(2)\(\Rightarrow\sin C\times b=\sin B\times c\Leftrightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\)
Rồi bạn chứng minh tương tự nha!
Cho tam giác ABC nhọn, AB=c, BC=a, AC=b. CMR: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Cho tam giác ABC nhọn có AB=c, AC = b, BC = a.
C/m : \(\frac{a}{SinA}=\frac{b}{SinB}=\frac{c}{SinC}\)
cảm ơn các bạn trước nhé!
Dựng các đường cao như trên hình vẽ .
Ta có : \(\frac{a}{sinA}=\frac{a}{\frac{BH}{c}}=\frac{ac}{BK}\)
\(\frac{b}{sinB}=\frac{b}{\frac{AH}{c}}=\frac{bc}{AH}\)
\(\frac{c}{sinC}=\frac{c}{\frac{BK}{a}}=\frac{ac}{BK}=\frac{c}{\frac{AH}{b}}=\frac{bc}{AH}\)
\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
Từ A ta kẻ AH vuông góc với BC, ta có ;
Sin B = \(\frac{Ah}{AB}\)
Sin C= \(\frac{Ah}{AC}\)
=> \(\frac{\sin B}{\sin C}=\frac{Ah}{Ab}=\frac{Ah}{AB}:\frac{Ah}{AC}=\frac{AC}{AB}\)
<=> \(\frac{\sin B}{\sin C}=\frac{B}{C}\)
<=> \(\sin B=\frac{C}{\sin C}\)
Tương tự ta có : \(\sin A=\frac{C}{\sin C}\)
=> \(\frac{\sin A=B}{\sin B=C}=\frac{C}{\sin C}\text{đ}pcm\)
Kẻ AH vuông BC tại H
Đặt AH=H
Tam giác AHB vuông tại H và tam giác AHC vuông tại H
\(\Rightarrow sinB=\frac{AH}{AB}\)
\(\Rightarrow sinC=\frac{AH}{AC}\)
\(\Rightarrow\frac{sinB}{sinC}=\frac{AH}{AB}.\frac{AC}{AH}=\frac{h}{c}.\frac{b}{h}=\frac{b}{c}\)
\(\Rightarrow\frac{b}{sinB}=\frac{c}{sinC}\left(1\right)\)
Tương tự ta có: \(\frac{a}{sinA}=\frac{b}{sinB}\left(2\right)\)
Từ (1) và (2) -->Đpcm
cho tam giác ABC nhọn, AB=c,AC=b,BC=a. Chứng minh a/sinA=b/sinB=c/sinC
Kẻ AH vuông góc BC
Xét ΔAHB vuông tại H có sin B=AH/AB
=>AH=c*sin B
Xét ΔAHC vuông tại H có sin C=AH/AC
=>AH=AC*sin C=b*sin C
=>c*sin B=b*sin C
=>c/sinC=b/sinB
Kẻ BK vuông góc AC
Xét ΔABK vuông tại K có
sin A=BK/AB
=>BK=c*sinA
Xét ΔBKC vuông tại K có
sin C=BK/BC
=>BK/a=sin C
=>BK=a*sin C
=>c*sin A=a*sin C
=>c/sin C=a/sin A
=>a/sin A=b/sinB=c/sinC