Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn My
Xem chi tiết
Nguyen My
Xem chi tiết
Lizy
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 11:42

1) \(Q=-x\) khi:

\(\dfrac{x-3}{x+1}=-x\)

\(\Leftrightarrow x-3=-x\left(x+1\right)\)

\(\Leftrightarrow x-3=-x^2-x\)

\(\Leftrightarrow x-3+x^2+x\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

2) \(Q< 1\) khi:

\(\dfrac{x-3}{x+1}< 1\)

\(\Leftrightarrow x-3< x+1\)

\(\Leftrightarrow x-x< 1+3\)

\(\Leftrightarrow0< 4\) (luôn đúng) 

Vậy \(Q< 0\) với mọi x 

3) \(Q=m\) khi:

\(\dfrac{x-3}{x+1}=m\)

\(\Leftrightarrow x-3=m\left(x+1\right)\)

\(\Leftrightarrow x-3=mx+m\)

\(\Leftrightarrow x-mx=m+3\)

\(\Leftrightarrow x\left(1-m\right)=m+3\)

\(\Leftrightarrow1-m\ne0\)

\(\Leftrightarrow m\ne1\)

你混過 vulnerable 他 難...
Xem chi tiết
Ngô Thành Chung
8 tháng 1 2021 lúc 16:22

phương trình hoành độ giao điểm của f(x) với y = -1 là

x4 - (3m + 2)x2 + 3m = -1

⇔ x4 - (3m + 2)x2 + 3m + 1 = 0 (1)

Đặt x2 = t (ĐK : t ≥ 0)

Phương trình trở thành 

t2 - (3m + 2)t + 3m + 1 = 0 (2)

Để (1) có 4 nghiệm phân biệt nhỏ hơn 2 thì (2) có 2 nghiệm phân biệt thỏa mãn 0 < t < 4

⇒ \(\left\{{}\begin{matrix}9-9m< 0\\3m+1>0\end{matrix}\right.\) (cái này bạn vẽ bảng biến thiên ra là xong)

⇒ \(\dfrac{-1}{3}< m< 1\) 

Vậy tập hợp giá trị m cần tìm là \(\left(\dfrac{-1}{3};1\right)\)

nhi ka
Xem chi tiết
nguyen bao tu
Xem chi tiết
Anh Aries
Xem chi tiết
Nguyễn Thị BÍch Hậu
30 tháng 6 2015 lúc 16:10

\(M=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{\left(2x-3\right)\left(5x+4\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)

=> M nguyên <=> 5x+4 nguyên và 7/2x-3 nguyên <=> x nguyên và 2x-3 thuộc Ư(7) <=> 2x-3 thuộc (+-1; +-7)

2x-31-17-7
x2(t/m đk)1(t/m đk)5(t/mđk)-2(t/m đk)

 

=> M nguyên <=> x thuộc (-2;1;2;5)

nguyenvankhoi196a
5 tháng 11 2017 lúc 14:05

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a

Minh Kún
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 0:52

a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

b: Để M đạt giá trị lớn nhất thì x-2=-1

hay x=1

c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)

\(\Leftrightarrow3x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)

Trần Phương Thảo
Xem chi tiết