Bài 1 Cho xy+yz+zx=4 Tìm GTNN của x4+y4+z4
Bài 2 Cho a+b+c=1 CMR 1/a+1/b+1/c>=9
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
Tìm x
(x-5)2=(3+2x)2
27x3-54x2+36x=9
cho bt x-y=4 và xy=1 tính giá trị của các biểu thức A=x2+y2,B=x3-y3,C=x4+y4
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
=))) Giúp tớ với các bạn nhỏ ơiii
1) Cho \(n\ge2\)là số nguyên . CMR \(2^{2^{n+1}}+2^{2^n}+1\)có ít nhất 3 ước nguyên dương lớn hơn 1
2) Cho a,b,c thỏa a + b + c = 0 . CMR \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
3) Cho x , y , z thỏa xy + yz + zx = 0 và x + y + z = -1 . Tính \(A=\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
- FanMixigaming -
Mầy sống ko tử tế thì ai giúp
2) Có: \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)
Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)
Tương tự:...
\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)
Giúp mik lm 2 bài này vs ak
1) cho a+b+c=1; a,b,c>0 .Tìm GTNN của A=a+b/abc
2) cho x,y,z đôi 1 khác nhau và 1/x+1/y+1/z=0.Tính A=yz/x^2 +2yz + xz/ y^2+2xz + xy/ z^2+2xy
cho\(\left\{{}\begin{matrix}a+b+c=1\\a^2+b^2+c^2\\\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\end{matrix}\right.=1\) . CMR: xy+yz+zx=0
Theo t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
1. Cho các số tự nhiên a,b thỏa mãn: \(2a^2+a=3b^2+b\)
CMR: a-b và 3a+3b+1 là các số chính phương
2. Tìm x biết:
\(\left(x^2+x=2\right)^2-\left(x+1\right)^3=x^6+1\)
3. Cho x,y,z > 0 thỏa mãn: xy+yz+zx=1 . Tìm GTNN của:
P=\(\dfrac{1}{4x^2+yz+2}+\dfrac{1}{4y^2+xz+2}+\dfrac{1}{4z^2+xy+2}\)
câu 2 : ta có : \(\left(x^2+x+2\right)^2-\left(x+1\right)^3=x^6+1\)
\(\Leftrightarrow x^6+\left(x+1\right)^3=\left(x^2+x+2\right)^2-1\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^4-x^3+2x+1\right)-\left(x^2+x+1\right)\left(x^2+x+3\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^4-x^3-x^2+x-2\right)=0\)
ta có : \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
\(\Rightarrow pt\Leftrightarrow x^4-x^3-x^2+x-2=0\)
giờ dùng pp đại số chuyển nó thành tích rồi giải bt
Bài 3 : Ta có BĐT : \(x^2+y^2+z^2\ge xy+yz+zx=1\)
Theo BĐT Cauchy schwarz dưới dạng engel ta có :
\(P=\dfrac{1}{4x^2+yz+2}+\dfrac{1}{4y^2+xz+2}+\dfrac{1}{4z^2+xy+2}\ge\dfrac{\left(1+1+1\right)^2}{4\left(x^2+y^2+z^2\right)+\left(xy+yz+zx\right)+6}=\dfrac{9}{4+1+6}=\dfrac{9}{11}\)
Vậy GTNN của P là \(\dfrac{9}{11}\) . Dấu \("="\) xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Cho x,y,z thỏa mãn xy+yz+zx=1
tìm GTNN của A= x^4+y^4+z^4
Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
1) Cho x, y, z là các số thực thoả mãn xyz = 1
CMR: 1/1+x+xy + 1/1+y+yz + 1/1+z+zx = 1
2)Cho a, b, c là các số thực khác 0 thoả mãn a+b-c/c = b+c-a/a = a+c-b/b
Tính giá trị của biểu thức P= (1 + b/a).(1 + c/b).(1 + a/c)
chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2