(x\(^2\)+3x+9)
TÍnh gt biểu thức
Q = (3x – 1)(9 x 2 – 3x + 1) – (1 – 3x)(1 + 3x + 9 x 2 ) tại x = 10
`Q=(3x-1)(9x^2-3x+1)-(1-3x)(1+3x+9x^2)`
`=(3x-1)(9x^2-3x+1)+(3x-1)(9x^2+3x+1)`
`=(3x-1)(9x^2-3x+1+9x^2+3x+1)`
`=(3x-1)(18x^2+2)`
Thay `x=10` vào biểu thức: `Q=(3.10-1)(18 .10^2+2)=52258`
(x+3) (x^2-3x+9) + (x-3) ( x^2+3x+9 )
`@` `\text {Ans}`
`\downarrow`
Thực hiện phép tính ;-;?
\((x+3) (x^2-3x+9) + (x-3) ( x^2+3x+9 )\)
`= x(x^2 - 3x + 9) + 3(x^2 - 3x + 9) + x(x^2 + 3x + 9) - 3(x^2 + 3x + 9)`
`= x^3 - 3x^2 + 9x + 3x^2 - 9x + 27 + x^3 + 3x^2 + 9x - 3x^2 - 9x - 27`
`= (x^3 + x^3) + (-3x^2 + 3x^2 + 3x^2 - 3x^2) + (9x - 9x + 9x - 9x) + (27 - 27)`
`= 2x^3`
1: 3/x+1 + 2/x+2 = 5x+4/x2+ 3x + 2
2: 2/3x + 1 - 15/6x2-x-1 = 3/2x - 1
3: 9/3x - 1 - 5-x/3x2-4x+1 = 4/x+ 1
4:5/x - 2 + 2/x+4 = 3x/x2 + 2x - 8
5: 4/x+6 + 1/x - 3 = 9/x2 + 3x - 18
6:x/x-3 - 2x2 +9/2x2 - 3x - 9= 1/2x + 3
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
mấy cái này mẫu nào dài cậu phân tích ra :
VD : câu 3 : \(3x^2-4x+1\)
\(=3x^2-3x-x+1\)
\(=3x\left(x-1\right)-\left(x-1\right)\)
\(=\left(3x-1\right)\left(x-1\right)\)
r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự
4; \(\frac{5}{x-2}+\frac{2}{x+4}=\frac{3x}{x^2+2x-8}.\)
\(\Leftrightarrow\frac{5\left(x+4\right)}{\left(x-2\right)\left(x+4\right)}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+4\right)}=\frac{3x}{\left(x-2\right)\left(x+4\right)}\)
\(\Leftrightarrow5x+20+2x-4=3x\)
\(\Leftrightarrow4x=-16\Leftrightarrow x=-2\left(TM\right)\)
KL ::
\(5;\frac{4}{x+6}+\frac{1}{x-3}=\frac{9}{x^2+3x-18}\)
\(\Leftrightarrow\frac{4\left(x-3\right)}{\left(x+6\right)\left(x-3\right)}+\frac{x+6}{\left(x-3\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}\)
\(\Leftrightarrow4x+x=3+9-6\)
\(\Leftrightarrow5x=6\Leftrightarrow x=\frac{6}{5}\)
thu gọn biểu thức B= (x+3y)(x-3y) -y(x+9y) : C=(3x-9)(x^2+3x+9)-3x(x^2-2) Mn giúp em với:(((
\(B=\left(x+3y\right)\left(x-3y\right)-y\left(x+9y\right)\)
\(=x^2-9y^2-xy-9y^2\)
\(=x^2-xy\)
\(C=\left(3x-9\right)\left(x^2+3x+9\right)-3x\left(x^2-2\right)\)
\(=3x^3-81-3x^3+6x\)
=6x-81
Tìm x biết:
d) (x-2)3-(x-3).(x2+3x+9)+6.(x+1)2=15
e) (x-1)3+(2-x).(4+2x+x2)+3x.(x+2)=17
f) (3x+3)2-18x=36+(x-3).(x2+3x+9)
Giải chi tiết giúp mình nha.Cảm ơn.
\(d,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow24x=-10\Leftrightarrow x=-\dfrac{5}{12}\\ e,\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\\ \Leftrightarrow9x=10\Leftrightarrow x=\dfrac{10}{9}\\ f,\Leftrightarrow9x^2+18x+9-18x=36+x^3-27\\ \Leftrightarrow x^3-9x^2=0\Leftrightarrow x^2\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
(x^2-5x+9)^2 + 4(x^2-3x+7)^2 = 4(x^2-5x+9)(x^2-3x+7)
rút gọn biểu thức (x^2+3x+9)x(x^2-3x+9)x(x^2-9)
các bn giups mik nhá
(=) (x+3)^2. (x-3)^2.(x-3).(x+3)
(=) (x+3)^3 . (x-3)^3
dấu . là dấu nhân nhé bn
Tìm x
b) (x-5) (x-4) - (x+1)(x-2)=7
c) (3x-4)(x-2)=3x(x-9)-3
d)(x-3)(x^2+3x+9)+x(5-x^2)=6x
e) (3x-5)(x+1)-(3x-1)(x+1)=x-4
b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Rightarrow x^2-9x+20-x^2+x+2=7\)
\(\Rightarrow-8x+22=7\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=-\frac{11}{17}\)
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Rightarrow6x=-27\)
\(\Rightarrow x=-\frac{27}{6}\)
\(\Rightarrow x=-\frac{9}{2}\)
e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Rightarrow-4=x-4\)
\(\Rightarrow x=0\)
b) (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8
c) (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17
d) (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27
e) (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0
Bài 2. Tìm x, biết :
a) 3x – 15 = 25 – 5x b) 3x - 17 = 2x – 7 c) 2x – 17 = – (3x – 18)
d) 3x – 14 = 2(x – 9) + 1 e) f) (x – 5)2 = 9
a) 3x – 15 = 25 – 5x
=> 3x + 5x = 25 + 15
=> 8x = 40
=> x = 5
b) 3x - 17 = 2x – 7
=> 3x - 2x = -7 + 17
=> x = 10
c) 2x – 17 = – (3x – 18)
=> 2x - 17 = -3x + 18
=> 2x + 3x = 18 + 17
=> 5x = 35
=> x = 7
d) 3x – 14 = 2(x – 9) + 1
=> 3x - 14 = 2x - 18 + 1
=> 3x - 2x = -18 + 1 + 14
=> x = -3
f) (x – 5)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
a) Ta có: \(3x-15=25-5x\)
\(\Leftrightarrow3x-15-25+5x=0\)
\(\Leftrightarrow8x-40=0\)
\(\Leftrightarrow8x=40\)
hay x=5
Vậy: x=5
b) Ta có: \(3x-17=2x-7\)
\(\Leftrightarrow3x-17-2x+7=0\)
\(\Leftrightarrow x-10=0\)
hay x=10
Vậy: x=10
c) Ta có: \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=-3x+18\)
\(\Leftrightarrow2x-17+3x-18=0\)
\(\Leftrightarrow5x-35=0\)
\(\Leftrightarrow5x=35\)
hay x=7
Vậy: x=7
d) Ta có: \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14-2x+18-1=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: x=-3
f) Ta có: \(\left(x-5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;8\right\}\)
Bài 2. Tìm x, biết :
a) \(3x-15=25-5x\)
\(\Leftrightarrow8x=40\)
\(\Leftrightarrow x=5\)
Vậy x = 5
b) \(3x-17=2x-7\)
\(\Leftrightarrow x=10\)
Vậy x = 10
c) \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=18-3x\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\)
Vậy x = 7
d) \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14=2x-17\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
e) \(\left(x-5\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy x = {8; 2}
tim nghiem da thuc 4x+9 , -5x+6 , x^2-1 , x^2-9 , x^2-x , x^2-2x , x^2-3x , 3x^2-4x
nghiệm của 4x+9
cho
4x+9=0
4x=-9
x=-9/4
vậy x=-9/4 là nghiệm của đa thứ 4x+9
nghiệm của -5x+6
cho
-5x+6=0
-5x=-6
x=-6:-5
x=6/5
vậy x=6/5 là nghiệm của đa thứ -5x+6
nghiệm của x2-1
cho
x2-1=0
x2=1
→x=1 hoặc x=-1
vậy x=1 hoặc x=-1 là nghiệm của đa thứ x2-1
nghiệm của x2-9
cho
x2-9=0
x2=9
→x=3 hoặc x=-3
vậy x=3 hoặc x=-3 là nghiệm của đa thứ x2-9
nghiệm của x2-x
cho
x2-x=0
→x2-1=0
→x=0
vậy x=0 là nghiệm của đa thức x2-x
` 4x + 9`
` 4x + 9=0`
` 4x = -9`
` x =-9/4`
Vậy.....
`-5x + 6 `
` -5x + 6=0`
` -5x = -6`
` x = 6/5`
Vậy....
` x^2 -1`
` x^2-1=0`
` ( x-1).(x+1)
\(=>\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy...
`x^2-9`
` x^2-9= 0`
` ( x + 3)(x-3) =0`
\(=>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy,.....
` x^2-x`
` x^2-x = 0`
` ( x-1)x=0`
\(=>\left[{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Vậy.....
`x^2-2x`
` x^2-2x = 0`
` ( x -2)x =0`
\(=>\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy.....
`4x+9=0`
`=>4x=-9`
`=>x=-9/4`
`-5x+6 =0`
`=>-5x=-6`
`=>x=6/5`
`x^2-1=0`
`=>x^2=1`
\(\Leftrightarrow x=\pm1\)
`x^2-9=0`
`=>x^2=9`
`=>\(x=\pm3\)`