Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Đình Tuyển
Xem chi tiết
Nguyễn Minh Trang
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 9 2021 lúc 23:40

Áp dụng bất đẳng thức Cauchy:

\(a\sqrt{b-1}=a\sqrt{1\left(b-1\right)}\le a\dfrac{1+b-1}{2}=\dfrac{ab}{2}\left(1\right)\)

CMTT: \(b\sqrt{a-1}\le\dfrac{ab}{2}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\left(đpcm\right)\)

\(ĐTXR\Leftrightarrow a=b=1\)

Hoàng Peter
Xem chi tiết
Hoàng Peter
5 tháng 5 2022 lúc 21:35

Giải giúp tui trong 5 phút ik

Trần Tuấn Hoàng
5 tháng 5 2022 lúc 21:37

-Đề sai.

Đồng Hoàng
5 tháng 5 2022 lúc 21:42

Nếu b=0 thì chắc A sẻ =1

Theo đó =>a2+b2=12+02=1+0=1

Yuu~chan
Xem chi tiết
Tuấn
Xem chi tiết
missing you =
17 tháng 7 2021 lúc 11:18

áp dụng BĐT Bunhiacopxky

\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)

\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)

Trung Hải 8A Hoàng
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2021 lúc 23:08

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)

\(=abc-abc+1-1=0\) (đpcm)

Ronaldo
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 20:56

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)

missing you =
2 tháng 8 2021 lúc 21:02

\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)

\(VT\ge VP\)(giả thiết)

\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)

\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)

\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))

\(\)

Lil Shroud
Xem chi tiết
Akai Haruma
15 tháng 9 2021 lúc 9:07

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)$

Cũng áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3$

$\Rightarrow a^2+b^2+c^2\geq a+b+c$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$