Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Obito

Những câu hỏi liên quan
Hoàng Phạm
Xem chi tiết
Pham Van Hung
29 tháng 7 2018 lúc 8:32

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

Xem chi tiết
Lấp La Lấp Lánh
21 tháng 9 2021 lúc 16:03

\(B=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

\(minB=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

Nguyễn Hoàng Minh
21 tháng 9 2021 lúc 16:04

\(B=2x^2+y^2-2x+2xy+2y+3\\ B=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(x^2-4x+4\right)-2\\ B=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x-2\right)^2-2\\ B=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

tt quỳnh
Xem chi tiết
Nguyễn Tất Đạt
13 tháng 5 2018 lúc 18:00

\(A=2x^2+5y^2-2xy+2x+2y\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2.2y.\frac{1}{2}+\frac{1}{4}\right)-1-\frac{1}{4}\)

\(=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\)

Ta thấy: \(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(2y+\frac{1}{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

\(\Rightarrow Min_A=-\frac{5}{4}\)

Tiến Hoàng Minh
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 10 2021 lúc 23:21

\(G=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)

\(=\left[x^2+2x\left(y-z\right)+\left(y-z\right)^2\right]+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)

\(=\left(x+y-z\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)

\(minG=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

 

Quỳnh Nguyễn
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 22:00

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$

Alex Arrmanto Ngọc
Xem chi tiết
Thu Thao
16 tháng 1 2021 lúc 10:17

\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)

\(=\left(y+x+1\right)^2+x^2-4x+1\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)

=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 

Yeutoanhoc
13 tháng 7 2021 lúc 19:53

Đặt `A=2x^2+2y^2+2xy-4x+4y+2021`

`<=>2A=4x^2+4y^2+4xy-8x+8y+4042`

`<=>2A=4x^2+4xy+y^2-8x-4y+3y^2+12y+4042`

`<=>2A=(2x+y)^2-4(2x+y)+4+3y^2+12y+12+4026`

`<=>2A=(2x+y-2)^2+3(y+2)^2+4026>=4026`

`=>A>=2013`

Dấu "=" xảy ra khi `y=-2,x=(2-y)/2=2`

Le Trang Nhung
Xem chi tiết
Tram Kam
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 16:50

`x^2-2xy+2y^2+2x-10+2038`

`=x^2-2xy+y^2+2(x-y)+y^2-8y+2038`

`=(x-y)^2+2(x-y)+1+y^2-8y+16+2021`

`=(x-y+1)^2+(y-4)^2+2021>=2021`

Dấu "=" `<=>` \(\begin{cases}y=4\\x=y-1=3\\\end{cases}\)

Trúc Giang
28 tháng 6 2021 lúc 16:52

\(x^2-2xy+2y^2+2x-10y+2038=\left(x-y+1\right)^2+\left(y-4\right)^2+2021\ge2021\)

Dấu = xảy ra khi:

\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)

=> x = 3 và y = 4

Vũ Huy Hoàng
Xem chi tiết
Đặng Tú Phương
22 tháng 2 2020 lúc 20:05

\(A=2x^2+2xy+y^2-2x+2y+2\)

\(\Rightarrow2A=4x^2+4xy+2y^2-4x+4y+4\)

              \(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right).1+1+y^2+6y+9-6\)

               \(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y+3\right)^2-6\)

                \(=\left(2x+y-1\right)^2+\left(y+3\right)^2-6\)

vì \(\left(2x+y-1\right)^2\ge0\forall x,y;\left(y+3\right)^2\ge0\forall y\)nên

\(2A=\left(2x+y-1\right)+\left(y+3\right)-6\ge-6\forall x,y\)

hay \(2A\ge-6\Rightarrow A\ge-3\Rightarrow minA=-3\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

                                                          

Khách vãng lai đã xóa