Giải tam giác ABC vuông tại C biết AB=12cm, B=60 độ
cho tam giác abc vuông tại a ac=12cm , góc b = 60 độ tính ab,ac
Xét ΔABC vuông tại A có
tan B=AC/AB
=>12/AB=tan60=căn 3
=>\(AB=4\sqrt{3}\left(cm\right)\)
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>\(BC^2=12^2+\left(4\sqrt{3}\right)^2=192\)
=>\(BC=8\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A ta có:
\(tanB=\dfrac{AC}{AB}\)
\(\Rightarrow tan60^o=\dfrac{AC}{AB}\)
\(\Rightarrow\sqrt{3}=\dfrac{AC}{AB}\)
\(\Rightarrow\sqrt{3}=\dfrac{12}{AB}\)
\(\Rightarrow AB=\dfrac{12}{\sqrt{3}}=\dfrac{12\sqrt{3}}{3}=4\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{\left(4\sqrt{3}\right)^2+12^2}\)
\(\Rightarrow BC=8\sqrt{3}\left(cm\right)\)
Giải tam giác ABC vuông tại A, biết rằng:
a) b = 8cm, C = 60°
b) c = 12cm, C = 30°
c) a = 10cm; C = 45°
d) c = 42cm; b = 36cm
a) Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=30^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan60^0\)
\(\Leftrightarrow AB=8\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=256\)
hay BC=16cm
b: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan60^0\)
nên \(AC=12\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=576\)
hay BC=24cm
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
1)Cho tam giác ABC vuông tại A.Biết góc B=60 độ;BC=4.Tính AB,AC,chiều cao AH
2)Cho tam giác ABC vuông tại A.Biết AB=2;góc C=45 độ.Tính AC,BC,chiều cao AH
3)Cho tam giác ABC vuông tại A,Biết AB=3;AC=4.Tính sin C,tan B
Giải giúp mình ạ
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F a, giải tam giác ABC biết AB = 5cm, AC =12cm b, CM: tam giác AEF đồng dạng tam giác ACB c, CM: BE = BCsin^3C
Cho tam giác abc vuông tại A, biết AC=4cm, b= 60 độ . Giải tam giác vuông ABC?
Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
hay \(AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A. Gọi BC = a, AC = b, AB = c. Giải tam giác ABC, biết:
a, b = 10 cm, C ^ = 30 0
b, a = 20cm,
B
^
=
35
0
c, a = 15cm, b = 10cm
d, b = 12cm, c = 7cm
a, Sử dụng tỉ số cosC và sinC, tính được
a = 20 3 3 cm, c = 10 3 3 cm và B ^ = 60 0
b, Sử dụng tỉ số sinB và cosB, tính được:
b = 20.sin 35 0 ≈ 11,47cm, c = 20.cos 35 0 ≈ 16,38cm
c, Sử dụng định lý Pytago và tỉ số sinB, tính được:
c = 5 5 cm, sinB = 10 15 => B ^ ≈ 41 , 8 0 , C ^ ≈ 48 , 2 0
d, Tương tự c) ta có
a = 193 cm, tanB = 12 7 => B ^ ≈ 59 , 7 0 , C ^ = 30 , 3 0
Cho tam giác ABC vuông tại A,Biết BC=12cm,góc C bằng 30 độ tính độ dài AB?