Tìm:
a) \(\int8\sin xdx;\)
b) \(\int\left(2\sin x-5\cos x\right)dx.\)
Tính tích phân: ∫ π x x + sin x d x = a π 3 + bπ Tính tích ab:
A. 3
B. 1 3
C. 6
D. 2 3
Hãy chỉ ra kết quả nào dưới đây đúng :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\sin xdx+\int\limits^{2\pi}_{\dfrac{3\pi}{2}}\sin xdx=0\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sqrt[3]{\sin x}-\sqrt[3]{\cos x}\right)dx=0\)
c) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\ln\dfrac{1-x}{1+x}dx=0\)
d) \(\int\limits^2_0\left(\dfrac{1}{1+x+x^2+x^3}+1\right)dx=0\)
tính nguyên hàm (sd pp nguyên hàm từng phần)
1. \(\int\dfrac{x}{\sin^2x}dx\)
2. \(\int\dfrac{x+1}{e^x}dx\)
3. \(\int x.\sin x.\cos xdx\)
4. \(\int e^x\sin xdx\)
1. Đặt \(\left\{{}\begin{matrix}u=x\\dv=\dfrac{dx}{sin^2x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cotx\end{matrix}\right.\)
Do đó I= \(-x.cotx+\int cotxdx\)= \(-xcotx+ln\left|sinx\right|\)
2. Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=\dfrac{dx}{e^x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-e^{-x}\end{matrix}\right.\)
Do đó I= \(-\left(x+1\right)e^{-x}+\int e^{-x}dx\)=\(-\left(x+1\right)e^{-x}-e^{-x}\)
=\(-\left(x+2\right)e^{-x}\)
3. Đặt \(\left\{{}\begin{matrix}u=x\\dv=sinx.cosx.dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\dv=\dfrac{1}{4}sin2x.d\left(2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{-cos2x}{8}\end{matrix}\right.\), do đó I= \(\dfrac{-x.cos2x}{8}+\int\dfrac{cos2x}{8}dx\)
=\(\dfrac{-x.cos2x}{8}+\int\dfrac{cos2x}{16}d\left(2x\right)\)= \(\dfrac{-x.cos2x}{8}+\dfrac{sin2x}{32}\)
\(\int\limits^{\frac{\pi}{2}}_0\sin^4x.\cos xdx\)
Tính các tích phân sau bằng phương pháp tính tích phân từng phần :
a) \(\int\limits^{e^4}_1\sqrt{x}\ln xdx\)
b) \(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{xdx}{\sin^2x}\)
c) \(\int\limits^{\pi}_0\left(\pi-x\right)\sin xdx\)
d) \(\int\limits^0_{-1}\left(2x+3\right)e^{-x}dx\)
tính :
\(\int\)e2x. sin2xdx
\(\int e^{2x}.sin^2xdx\).
Đặt \(\left\{{}\begin{matrix}u=sin^2x\\dv=e^{2x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=2sinxcosxdx=sin2xdx\\v=\dfrac{1}{2}e^{2x}\end{matrix}\right.\).
\(\Rightarrow\) \(\int e^{2x}.sin^2xdx=\dfrac{e^{2x}.sin^2x}{2}-\dfrac{1}{2}\int e^{2x}.sin2xdx\) (1).
Đặt \(\left\{{}\begin{matrix}u=sin2x\\dv=e^{2x}dx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=2cos2xdx=2\left(1-2sin^2x\right)dx\\v=\dfrac{1}{2}e^{2x}\end{matrix}\right.\).
\(\Rightarrow\) \(\int e^{2x}.sin2xdx=\dfrac{1}{2}e^{2x}.sin2x-\int e^{2x}.\left(1-2sin^2x\right)dx=\dfrac{e^{2x}.sin2x-e^{2x}}{2}+2\int e^{2x}.sin^2xdx\) (2).
Thế (2) và (1), ta suy ra:
\(\int e^{2x}.sin^2xdx=\dfrac{1}{8}e^{2x}.\left(2sin^2x-sin2x+1\right)+C\).
Câu 17(TH) Giá trị của \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx\)bằng
A. 0 B. 1 C. -1 D. \(\dfrac{\pi}{2}\)
\(\int\limits^{\dfrac{\pi}{2}}_0sinxdx=cosx|^{\dfrac{\pi}{2}}_0=-1\)
Cho hàm số y=f(x) liên tục trên R thỏa mãn ∫ 1 9 f ( x ) x d x = 4 , ∫ 0 π 2 f ( sin x ) c o s x d x = 2 . Tích phân ∫ 0 3 f ( x ) d x bằng
A. 8
B. 4
C. 6
D. 10
tính các tích phân
1.\(\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}e^{\sin x}\cos xdx\)
2.\(\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{2}}e^{2\cos x+1}\sin xdx\)
3,\(\int_1^e\dfrac{e^{2lnx+1}}{x}dx\)
4.\(\int_0^1xe^{x^2+2}dx\)
Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:
\(d(u(x))=u'(x)dx\)
Câu 1)
Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)
Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)
Câu 2)
\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)
Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)
\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)
Câu 3:
Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)
\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)
Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)
Câu 4:
\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)
Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)
Chứng minh rằng :
\(\lim\limits_{n\rightarrow+\infty}\int\limits^1_0x^n\sin\pi xdx=0\)