Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f(0)=0, ∫ 0 π 4 f ' x 2 d x = 2 và ∫ 0 π 4 sin 2 x f ( x ) d x = 1 2 Tích phân ∫ 0 π 4 f x d x bằng
A. -1/2
B. 1/2
C. -1/4
D. 1/4
Cho hàm số y = f(x) liên tục trên R thỏa mãn điều kiện
2 x [ 1 + f ( x ) ] = [ f ' ( x ) ] 3 , ∀ x ∈ R f ( 0 ) = - 1 Tích phân ∫ 0 1 f ( x ) dx bằng
A. 1 4
B. - 5 6
C. 1 3
D. - 2 3
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f π 4 = 3 , ∫ 0 π 4 f x cos x d x = 1 và ∫ 0 π 4 sin x . tan x . f x d x = 2 Tích phân ∫ 0 π 4 sin x f ' x d x bằng
A. 4.
B. 2 + 3 2 2
C. 1 + 3 2 2
D. 6.
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = sinx với mọi x và f(0) = 1. Tính e x f ( π ) .
A. e x - 1 2
B. e x + 1 2
C. e x + 3 2
D. π + 1 2
Cho hàm số f(x) liên tục trên R thoả mãn f(0)=0 và | f ( x ) - f ( y ) | ≤ | sin x - sin y | với mọi x , y ∈ R . Giá trị lớn nhất của tích phân ∫ 0 π 2 ( ( f ( x ) ) 2 - f ( x ) ) d x bằng
A. π 4 +1
B. π 8
C. 3 π 8
D. 1- π 4
Cho hàm số f (x) nhận giá trị dương, có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) thỏa mãn 2 f ' ( x ) ( f ( x ) ) 2 = f ( x ) ( x + 2 ) x 3 , ∀ x > 0 và f ( 1 ) = 1 3 . Tích phân ∫ 1 2 1 ( f ( x ) ) 2 d x bằng
A. 11 2 +ln2
B. - 1 2 +ln2
C. 3 2 +ln2
D. 7 2 +ln2
Cho hàm số R xác định và liên tục trên D thỏa mãn f(x)>3. Biết ( f ( x ) - 3 m x - 3 = m 2 x 2 - 6 m x + 9 + m f 2 ( x ) - 6 f ( x ) + 9 + m với m>0. Tính l o g m f ( m ) ?
A. 2
B. 1
C. 3
D. 4
Cho hàm số R xác định và liên tục trên D thỏa mãn f(x)>3. Biết ( f ( x ) - 3 m x - 3 = m 2 x 2 - 6 m x + 9 + m f 2 ( x ) - 6 f ( x ) + 9 + m với m>0. Tính l o g m f ( m ) ?
A. 2
B. 1
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [ 0 ; 2 ] và thỏa mãn f ( 0 ) = 2 , ∫ 0 2 ( 2 x - 4 ) . f ' ( x ) d x = 4 . Tính tích phân I = ∫ 0 2 f ( x ) d x .
A. I = 2
B. I = - 2
C. I = 6
D. I = - 6