So sánh
a) \(\left(0,1\right)^{10}\)và \(\left(0,3\right)^{20}\)
b) \(\left(\frac{1}{16}\right)^{10}\)và \(\left(\frac{1}{2}\right)^{50}\)
c) \(2^{400}\)và \(4^{200}\)
Bài 1 : So sánh
\(\left(\frac{1}{10}\right)^{15}\) và \(\left(\frac{3}{10}\right)^{20}\)
Bài 2 : So sánh
A = \(\left(\frac{13^{15}+1}{13^{16}+1}\right)\) và B = \(\left(\frac{13^{16}+1}{13^{17}+1}\right)\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
So sánh các lũy thừa sau
a, \(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
b, 9920 và 999910
a, Ta có :
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
bạn so sánh nha :)
b,
T/c : \(99^{20}=\left(\left(99\right)^2\right)^{10}=9801^{10}\)
tiếp đây thì bạn tự làm nha có gì k hiểu ibx mk
VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ
\(a,4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)
\(b,5^2.3^5.\left(\frac{3}{5}\right)^2\)
2 SO SÁNH
\(a,10^{20}và9^{10}\)
\(b,\left(-5\right)^3và\left(-3\right)^{50}\)
\(c,64^3và16^{12}\)
\(d,\left(\frac{1}{16}\right)^{10}và\left(\frac{1}{2}\right)^{50}\)
Câu 1 :
a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)
\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)
\(=2048=2^{11}\)
b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)
\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)
VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ
\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)
\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)
2 SO SÁNH
\(a,10^{20}\text{ và }9^{10}\)
Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)
\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)
Có: \(\left(-3\right)^{50}=3^{50}\)
\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)
\(c,64^3\text{ và }16^{12}\)
Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)
\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)
Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
So sánh:
a) \(\left(\dfrac{1}{16}\right)^{10}\) và \(\left(\dfrac{1}{2}\right)^{50}\)
b) \(\left(\dfrac{1}{2}\right)^{300}\)và \(\left(\dfrac{1}{3}\right)^{200}\)
c) \(\left(0,1\right)^{10}\) và \(\left(0,3\right)^{20}\)
\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}< \left(\dfrac{1}{2}\right)^{50}\\ \left(\dfrac{1}{2}\right)^{300}=\left(\dfrac{1}{2}\right)^{3\cdot100}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\\ \left(\dfrac{1}{3}\right)^{200}=\left(\dfrac{1}{3}\right)^{2\cdot100}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\\ \dfrac{1}{8}>\dfrac{1}{9}\Rightarrow\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\Rightarrow\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\\ \left(0,3\right)^{20}=\left(0,3\right)^{2\cdot10}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}< \left(0,1\right)^{10}\)
a) \(\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{40}< \left(\dfrac{1}{2}\right)^{50}\)
Vì \(40< 50\)
b)\(\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
\(\Rightarrow\text{}\text{}\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
Vì \(\dfrac{1}{8}>\dfrac{1}{9}\)
c)\(\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
\(\Rightarrow\left(0,1\right)^{10}>\left(0,3\right)^{20}\)
Vì \(0,1>0,09\)
Sửa lại câu a
\(\left(\dfrac{1}{2}\right)^{40}>\left(\dfrac{1}{2}\right)^{50}\)
So sánh
\(a,\left(-5\right)^{30}\&\left(-3\right)^{50}\)
\(b,\left(\frac{1}{16}\right)^{10}\&\left(\frac{1}{2}\right)^{50}\)
a)
Vì 3<5
\(\Rightarrow3^{30}< 5^{30}\)
\(\Rightarrow\left(-3\right)^{30}< \left(-5\right)^{30}\)
b)
Ta có
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{10}.\left(\frac{1}{2}\right)^{10}\)
\(=\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}\)
Ta có
\(\left(\frac{1}{2}\right)^{10}< 1\)
\(\Leftrightarrow\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
ta có :\(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)là 2 lũy thừa bậc chẵn nên :\(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
từ trên suy ra (-5)^30<(-3)^50
b) Ta có:\(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2^5}\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
ta có :\(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)là 2 lũy thừa bậc chẵn nên :\(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
từ trên suy ra (-5)^30<(-3)^50
b) Ta có:\(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2^5}\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
bài 1 tính
a)\(-\frac{1}{4}\) b)\(\left(-2\frac{1}{3}\right)^2\) c)(0,5)3 d)\(\left(-1\frac{1}{3}\right)^4\)
bai 2 tìm x , biết
a)x:\(\left(-\frac{1}{3}\right)^3\)=\(-\frac{1}{3}\) b)\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\) c)\(\left(\frac{4}{5}\right):x=\left(\frac{4}{5}\right)^7\) d)\(3x+1=27\)
bài 3 so sánh
a)\(10^{20}va9^{10}\) b)\(\left(-5\right)^3^0va\left(-3\right)^{50}\) c)\(64^8va16^{12}\) d)\(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
Bài 1 và Bài 2 dễ, bn có thể tự làm được!
Bài 3:
a) ta có: 1020 = (102)10 = 10010
=> 10010>910
=> 1020>910
b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)
(-3)50 = 350 = (35)10= 24310
=> 12510 < 24310
=> (-5)30 < (-3)50
c) ta có: 648 = (26)8= 248
1612 = ( 24)12 = 248
=> 648 = 1612
d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
3.a) Ta có: 910=(32)10=320
Mà 1020<320
Nên 1020<910
c)Ta có:648 =(82)8=816
1612=(23)12=836
vì 816<836
Nên 648<162
So sánh:
a) \({( - 2)^4} \cdot {( - 2)^5}\) và \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) và \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2}\) và \({\left[ {{{(0,3)}^2}} \right]^3}\);
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) và \({\left( {\frac{3}{2}} \right)^2}\).
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
(-2) ^4 . (-2) 65 và ( -2) ^ 12 : ( -2) ^3
=( -2) ^ 4+5 =(-2)^9 và (-2) ^12-3 = ( -2) ^9
vậy ( -2) ^9 = (-2) ^9
Nên (-2) ^4 .( -2) ^5 = ( -2) ^ 12 : ( -2) ^3
Bài 1 : So sánh :
\(\left(\frac{1}{16}\right)^{200}\)và \(\left(\frac{1}{2}\right)^{1000}\)
Bài 2 : Tính :
\(\left(6^9.2^{10}+12^{10}\right):\left(2^{19}.27^3+15.4^9.9^4\right)\)
làm được bài 1:
TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)
\(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)
vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)
1.\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
2. \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
3. Hãy so sánh A và B
\(A=\frac{10^{2006}+1}{10^{2007}+1}\) \(B=\frac{10^{2007}+1}{10^{2008}+2}\)