Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2021 lúc 12:49

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

lê thu hương
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2019 lúc 22:52

Bạn ghi đề nhầm rồi bạn, cho a=b=c=1 thì 2 vế đâu bằng nhau

Kyun Diệp
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2021 lúc 22:49

a.

Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
1 tháng 5 2021 lúc 22:51

b.

Ta có:

\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)

Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

Cộng vế với vế:

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

logo212
Xem chi tiết
Kuro Kazuya
24 tháng 1 2017 lúc 18:32

Ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow0=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(\Leftrightarrow0=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\)

\(\Leftrightarrow0=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\left\{\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\) ( đpcm )

Hoàng Hưng Đạo
Xem chi tiết
zanggshangg
14 tháng 5 2021 lúc 21:04

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
zanggshangg
14 tháng 5 2021 lúc 21:09

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

Pham Thanh Trung
Xem chi tiết
luyen hong dung
2 tháng 5 2018 lúc 16:12

Ta thấy trong 3 số thực dương a;b;c luôn tồn tại hai số cùng lớn hơn hay nhỏ hơn hoặc bằng 1.Giả sử 2 số đó là b,c

Khi đó \(\left(b-1\right)\left(c-1\right)\ge0\)

\(\Leftrightarrow bc\ge b+c-1\ge0\)\(\Rightarrow2abc\ge2ab+2ac-2a\)

Do đó \(a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ab+2ac-2a+1\)

Nên bây giờ ta chứng minh :\(a^2+b^2+c^2+2ab+2ac-2a+1\ge2\left(ab+bc+ca\right)\)

                                            \(\Leftrightarrow\left(a-1\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=c=1

Nguyễn Duy Hưng
Xem chi tiết
Lê Thị Hoài Thanh
Xem chi tiết
Lung Thị Linh
19 tháng 3 2019 lúc 21:11

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk;c=dk\)

Thay a = bk, c = dk vào \(\frac{a^2-b^2}{c^2-d^2}\) và \(\frac{ab}{cd}\), ta có:

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Quìn
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 22:56

a)Có \(b^2+c^2-a^2=cosA.2bc\)

\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)

\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)

b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\)\(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)

Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)

c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC 

Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)

\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)

d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)

\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)

\(=b^2-c^2\) (dpcm)