Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diệp Nguyễn Thị Huyền

Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\). Chứng minh rằng:

a+b+c\(\ge\)ab+bc+ca

Nguyễn Việt Lâm
4 tháng 10 2021 lúc 12:49

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm


Các câu hỏi tương tự
Diệp Nguyễn Thị Huyền
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn An
Xem chi tiết
Lê Đức Lương
Xem chi tiết
Minz Ank
Xem chi tiết
Lê Đức Lương
Xem chi tiết
Hoang Tran
Xem chi tiết
vn jat
Xem chi tiết
socola Lê
Xem chi tiết