Giair hộ cái .
\(x^2-2-4=0\)
bài 3: làm hộ mình cái bài này cái ( hại não):
8 - 3 x 0 + 4 : 2
8-3x0+4:2
=8-3x0+2
=5x0+2
=0+2
=2
tick cho minh nha
Giair các phương trình sau
a/ 2x-5=0 b/ 3x^2 +x=0
c/ (x+4)^2 - 9= 0 d/ x+1/x-2 + x-1/x+2 = 2(x^2 + 2)/ x^2 - 4
a: 2x-5=0
=>2x=5
hay x=5/2
b: =>x(3x+1)=0
=>x=0 hoặc x=-1/3
c: =>(x+4+3)(x+4-3)=0
=>(x+7)(x+1)=0
=>x=-7 hoặcx=-1
(5/2*x-3);15=3/10 . Giair hộ mk với
sửa
(5/2*x-3)/15=3/10
5/2*x-3=3/10*15
5/2*x-3=9/2
5/2*x=9/2+3=9/2+6/2
5/2*x=15/2
x=15/2:5/2
x=3
Tính nhanh 2×(15-5)+3×10-5×10
Ai nhanh mk tick ✔
Giair phương trình
1) 2x2-3x-2=0 7) (2x2-3x-4)2=(x2-x)2
2) 4x2-7x-2=0 8) \(\dfrac{2}{x+1}-\dfrac{3}{x+2}=\dfrac{1}{3x+3}\)
3) 4x2+5x-6=0 9) \(\dfrac{x}{x-3}=\dfrac{1}{x+2}\)
4) 4x2+5x-9=0 10) \(\dfrac{4}{2x-3}-\dfrac{7}{3x-5}=0\)
5) 5x2-18x-8=0 11) \(\dfrac{7}{x+2}+\dfrac{2}{x+3}=\dfrac{1}{x^2+5x+6}\)
6) (3x2+2x+4)2=(x2-4)2 12) \(\dfrac{4}{x-2}+\dfrac{x}{x+1}=\dfrac{x^2-2}{x^2-x-2}\)
Giúp em vs em đag cần câu tl gấp em c.ơn trước
\(1.\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(2.\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(3.4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2=0\)
Giair phương trình hộ mik nhé đúng mik tick cho
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
P/s: Bạn Thùy Linh nếu PT chứa nghiệm vô tỉ thì với trình độ bình thường không dễ tìm được nghiệm đâu nhé
3) Ta có: \(4\left(x^2+x+1\right)^2+5x\left(x^2+x+1\right)+x^2=0\)
\(\Leftrightarrow\left[4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)\right]+\left[x\left(x^2+x+1\right)+x^2\right]=0\)
\(\Leftrightarrow4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(4x^2+4x+4+x\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(4x^2+5x+4\right)\left(x+1\right)^2=0\)
Xét PT \(4x^2+5x+4=0\) ta có:
\(\Delta_x=5^2-4\cdot4\cdot4=-39< 0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy x = -1
Giair bất phương trình
a. x-4/6+1/2>2x-5/3
b. 2/3-x>0
a)x-4/6+1/2>2x-5/3
=x-4+3>4x-10
<=>-3x>9
<=>x<-3
câu b
-x>-2/3 =>x<2/3
de ot ak
Bài 1: Giair các phương trình sau:
3, \(x^2-2-2\sqrt{4x-7}=0\)
4, \(4x^2-5x+1+2\sqrt{x-1}=0\)
BÀI 2: Giair các phương trình sau:
4, \(\sqrt{x-1}+\sqrt{5-x}=x^2-2x+5\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Bài 3: Giair các phương trình sau:
2, \(x^2-x+2=2\sqrt{x^2-x+1}\)
Bài 4: Giair các phương trình sau:
2, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
4, \(\left(1+x\sqrt{x^2+1}\right)-\left(\sqrt{x^2+1}-x\right)=1\)
Bài 5: Giair các phương trình sau:
1, \(\sqrt{2x^2-4x+5}-x+4=0\)
2, \(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
Bài 6: Cho x,y thỏa mãn \(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\). Tính giá trị biểu thức:
A = \(\left(4x-2\right)^{2017}+\left(4y-1\right)^{2018}\)
\(x^2-2-2\sqrt{4x-7}=0\)
\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(4x^2-5x+1+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)
\(\Rightarrow x=1\)
. . .
\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)
\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Đến đây lập bảng xét dấu
. . .
\(x^2-x+2=2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)
Tự làm tiếp nhé.
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)
\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x=5\)
. . .
\(\sqrt{2x^2-4x+5}-x+4=0\)
\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)
\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)
\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)
\(\Leftrightarrow x^2+5x-6=1\)
Tự làm tiếp nhé.
. . .
\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)
Tự làm tiếp nhé.
- Lô Vỹ Vy Vy Nếu câu hỏi liên quan đến hình học, thì mỗi lần đăng một câu thôi, nếu câu hỏi liên quan đến đại số và số học thì có thể đẳng 3 - 4 câu một lần. Lần sau đừng đăng dày đặc như thế này nữa.
Giair hộ bài này với
Cho x>y ; y>0 và x^2 + y^2\(\le\)x+y . Chứng minh x+3y\(\le\)2+\(\sqrt{5}\)
Nhanh lên tí đi học rồi
Giair các pt
a/ \(\sqrt{x^2-2x+z}-\sqrt{3+2\sqrt{2}}=0\) 0
b/ \(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
b) \(\sqrt{x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2}\) _ \(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3.1+1^2}}\) = 0
=\(\sqrt{\left(x+\frac{1}{2}\right)^2}\) _ \(\sqrt{\left(\sqrt{3}+1\right)^2}\) = 0
= \(x+\frac{1}{2}\) _ \(\sqrt{3}-1\) = 0 ( \(\sqrt{3}-1\) dương => trị tuyệt đói bằng chính nó mà - ( \(\sqrt{3}+1\) ) = \(-\sqrt{3}-1\)
=> x = \(-\frac{1}{2}-\sqrt{3}\)
may be wrong hihi >.<