Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cíu iem
Xem chi tiết
Huỳnh Thị Thanh Ngân
18 tháng 10 2021 lúc 19:49

Do câu d mình ko biết làm bởi v mình không làm được

undefined

 

Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:55

`a, 4a^2 + 4a + 1 = (2a+1)^2`

`b, -3x^2 + 6xy - 3y^2`

` = -3(x-y)^2`

`c, (x+y)^2 - 2(x+y)z + z^2`

`= (x+y-z)^2`

Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:47

`a, P = 2x(3 - x^2)`

`b, Q = 5x^2(x-3y)`

`c, R = xy(3x^2y^2 - 6y^2z + 1)`

HT.Phong (9A5)
22 tháng 7 2023 lúc 8:49

a) \(P=6x-2x^3\)

\(P=2x\left(3+x^2\right)\)

b) \(Q=5x^3-15x^2y\)

\(Q=5x^2\left(x-3y\right)\)

c) \(R=3x^3y^3-6xy^3z+xy\)

\(R=xy\left(3x^2y^2-6y^2z+1\right)\)

Tr Giang
21 tháng 4 lúc 20:16

a,P=2x(3−x2)𝑎,𝑃=2𝑥(3-𝑥2)

b,Q=5x2(x−3y)𝑏,𝑄=5𝑥2(𝑥-3𝑦)

c,R=xy(3x2y2−6y2z+1)

Thanh Tô
Xem chi tiết
vũ tiền châu
11 tháng 7 2018 lúc 18:56

t chỉ cho kết quả thôi nhá, còn nhóm nhân tử you tự xử nhá !

=(x-y)(z-x)(z-y)(x+y+z)

KAl(SO4)2·12H2O
11 tháng 7 2018 lúc 19:23

\(\left(x-y\right)z^3+\left(z-z\right)y^3+\left(y-z\right)x^3\)

\(=z^3\left(x-y\right)+y^3\left(z-x\right)+x^3\left(y-z\right)\)

\(=xz^3-yz^3+\left(z-x\right)y^3+\left(y-z\right)x^3\)

\(=xz^3-yz^3+y^3z-xy^3+\left(y-z\right)x^3\)

\(=xz^3-yz^3+y^3z-xy^3+y^3z-xy^3+x^3y-x^3z\)

Mk ko chắc

Không Tên
11 tháng 7 2018 lúc 22:07

\(\left(x-y\right)z^3+\left(z-x\right)y^3+\left(y-z\right)x^3\)

\(=\left(x-y\right)z^3-\left[\left(x-y\right)+\left(y-z\right)\right]y^3+\left(y-z\right)x^3\)

\(=\left(x-y\right)z^3-\left(x-y\right)y^3-\left(y-z\right)y^3+\left(y-z\right)x^3\)

\(=\left(x-y\right)\left(z^3-y^3\right)+\left(y-z\right)\left(x^3-y^3\right)\)

\(=\left(x-y\right)\left(z-y\right)\left(z^2+zy+y^2\right)+\left(y-z\right)\left(x-y\right)\left(x^2+y^2+xy\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x^2+y^2+xy-z^2-y^2-zy\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(x+y+z\right)\)

Tiến Bùi Việt
Xem chi tiết
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 9 2021 lúc 16:23

1)

a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)

\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)

2) 

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)

Liên Đào
Xem chi tiết
Hoàng Phúc
23 tháng 1 2017 lúc 21:11

-(z+x)3  mới đúng-

đặt x+y=a , y+z=b , z+x=c thì a+b+c=2(x+y+z)

ta có 8(x+y+z)3-(x+y)3-(y+z)3-(z+x)3=[2(x+y+z)]3-(x+y)3-(y+z)3-(z+x)3=(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a) 

=3(x+2y+z)(y+2z+x)(z+2x+y)

Cíu iem
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 10:27

Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)

\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)

Nguyễn Hoàng Tú
Xem chi tiết
Viet Xuan
10 tháng 11 2021 lúc 15:05

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 8:24

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)