2/5 - 3/5 : (3/5 + -2/3) - 3_1/2
2/5+3/5:(3/5+-2/3)-3_1/2
2/5+3/5:(3/5+-2/3)-3-1/2
=2/5+3/5:(9/15+-10/15)-3-1/2
=2/5+3/5:(-1)/15-3-1/2
=2/5+3/5.15/(-1)-3-1/2
=2/5+(-9)-3-1/2
=(2/5-1/2)+(-9-3)
=(4/10-5/10)+(-12)
=-1/10-12
=-1/10-120/10
=(-121)/10
A=1/1×3_1/2×4+1/3×5-1/4×6+...+1/98×100
1. Tìm x
a) 2x-3/x+1=21/16
4. Tìm x trong tỷ lệ thức a) 2x:6=5:3
b) 3_1/2: (3x-2)=1/12:4/21
C) 2,5:3x=5:0,6
( 2+2/3_1/4) *1/5
( 2 + 2/3 - 1/4 ) * 1/5
= ( 6/ 3 + 2/3 - 1/4 ) * 1/5
= ( 8/3 - 1/4 ) * 1/5
= ( 32/12 - 3/ 12 ) * 1/5
= 29 / 12 * 1/5
=29/60
1) Cho x,y,z > -1 thỏa mãn:
\(x^3+y^3+z^3\)≥ \(x^2+y^2+z^2\)
CMR: \(x^5+y^5+z^5\)≥ \(x^2+y^2+z^2\)
2. Cho a,b,c ϵ {0;1;2} và a+b+c=3
CMR: \(a^2+b^2+c^2\) ≤ 5
3. Cho \(a_1,a_2,..,a_9\in\left[-1;1\right]\) sao cho \(a^3_1+a^3_2+...+a^3_9=0\)
CMR: \(a^3_1+a^3_2+...+a^3_9\le3\)
4. Cho \(ab\ge1\). CMR: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\)
5. Cho a,b,c >0. CMR:
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le3\cdot\frac{a^2+b^2+c^2}{a+b+c}\)
5/ Tưỡng dễ ăn = sos + bđt phụ ai ngờ....hic...
\(BĐT\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2+b^2+c^2}{a+b+c}-\frac{a^2+b^2}{a+b}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(a^2+b^2+c^2\right)\left(a+b\right)-\left(a^2+b^2\right)\left(a+b+c\right)}{\left(a+b+c\right)\left(a+b\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)-bc\left(b-c\right)}{\left(a+b+c\right)\left(a+b\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(a+b\right)}-\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(b+c\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)}\ge0\left(\text{đúng}\right)\)
Ai ngờ nổi khi không dùng BĐT phụ lại dễ hơn cái kia chứ -_-
Ây za,nhầm dòng cuối cùng xíu ạ:
\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)\left(a+b\right)\left(b+c\right)}\ge0\left(\text{đúng}\right)\) -_- đánh thiếu một chút lại ra nông nỗi -_-
Bài 1:
Xét các hiệu sau:
\(M=x^3+y^3+z^3-(x^2+y^2+z^2)=x^2(x-1)+y^2(y-1)+z^2(z-1)\)
\(N=x^4+y^4+z^4-(x^3+y^3+z^3)=x^3(x-1)+y^3(y-1)+z^3(z-1)\)
Lấy $N-M$:
\( N-M=\sum x^2(x-1)(x-1)=\sum x^2(x-1)^2\geq 0\)
\(\Leftrightarrow \sum x^4-2\sum x^3+\sum x^2\geq 0\)
\(\Rightarrow \sum x^4\geq 2\sum x^3-\sum x^2(*)\)
\(P=x^5+y^5+z^5-(x^4+y^4+z^4)=x^4(x-1)+y^4(y-1)+z^4(z-1)\)
Lấy $P-M$
\(P-M=\sum x^2(x-1)(x^2-1)=\sum x^2(x-1)^2(x+1)\geq 0, \forall x,y,z>-1\)
\(\Leftrightarrow \sum x^5-\sum x^4-\sum x^3+\sum x^2\geq 0\)
\(\Leftrightarrow \sum x^5\geq \sum x^4+\sum x^3-\sum x^2\). Kết hợp với (*) và điều kiện ban đầu suy ra:
\(\sum x^5\geq 2\sum x^3-\sum x^2+\sum x^3-\sum x^2=3\sum x^3-2\sum x^2\geq \sum x^2\)
Cho phương trình x2 -(m+1)x +m-5=0
Xác định giá trị của m để phương trình có 2 nghiệm x1, x2 thõa mãn \(\left\{{}\begin{matrix}x_1-x_2=4\\x^3_1-x_2^3=32\end{matrix}\right.\)
Ta có
△\(=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m-5\right)=m^2+2m+1-4m+20=m^2-2m+21>0\)Vậy phương trình luôn có 2 nghiệm \(x_1,x_2\) phân biệt
Theo định lí Vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{m+1}{1}=m+1\\x_1x_2=\frac{c}{a}=\frac{m-5}{1}=m-5\end{matrix}\right.\)
Ta lại có \(x_1^3-x_2^3=32\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=32\Leftrightarrow4.\left(x_1^2+2x_1x_2+x_2^2-x_1x_2\right)=32\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=8\Leftrightarrow\left(m+1\right)^2-\left(m-5\right)=8\Leftrightarrow m^2+2m+1-m+5-8=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy m=1 hoặc m=-2 thì phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1-x_2=4\\x_1^3-x_2^3=32\end{matrix}\right.\)
Cho phương trình: \(x^2-2mx+m^2-2=0\). Gọi hai nghiệm của phương trình là x1,x2. Tìm m để
a. \(x_1^3-x_2^3=10\sqrt{2}\)
b. \(x^3_1-x^3_2=-10\sqrt{2}\)
Rút gọn : a . P = 3+2√3 / √3 + 2+√2 / √2+1 - ( √2 + √3 ) ; b. N = ( 1 - 5 + √5 / 1 + √5 ) ( 5 - √5 / 1- √5 - 1 ) ; c. Q = ( 5 - 2√5 / 2 - √5 - 2 ) ( 3+3 √5 / 3 + √5 - 2 ). Giúp mik vs ạ
a: \(P=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-\sqrt{3}-\sqrt{2}\)
\(=2+\sqrt{3}+2-\sqrt{2}-\sqrt{3}-\sqrt{2}\)
\(=4-2\sqrt{2}\)
b: \(N=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
a) \(P=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(P=\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\cdot\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(P=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-\sqrt{3}\)
\(P=2\)
b) \(N=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(N=\left[1-\dfrac{\sqrt{5}\left(1+\sqrt{5}\right)}{1+\sqrt{5}}\right]\left[1+\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\)
\(N=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)\)
\(N=1^2-\left(\sqrt{5}\right)^2\)
\(N=-4\)
c) \(Q=\left(\dfrac{5+2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
\(Q=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+2\right]\left[\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right]\)
\(Q=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\)
\(Q=\left(\sqrt{5}\right)^2-2^2\)
\(Q=1\)
ý nào đúng ý nào sai
a, 2/5 + 3/5 = 2 +3 / 5+ 5
b, 2/5 + 3/5 = 2 . 5 + 3 . 5 / 5
c, 2/5 + 3/5 = 2 + 3 / 5
d, 2/5 + 3/5 = 2 . 5 + 3 . 5 / 5 + 5
. là nhân
/ là phần
Cả bốn câu sai đúng như mình suy rằng cả bốn phép tính đều sai còn các bạn khác có như đáp án của mình và khánh lưa ko nhớ nhắn cho mình nhé hi hi😀😂
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144