Cho phương trình \(x^2-4x-6=0\). Không giải phương trình, tính giá trị của biểu thức sau (\(x_1,x_2\) là hai nghiệm của phương trình):
\(A=x^2_1+x^2_2;\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(C=x^3_1+x^3_2\)
\(D=\left|x_1-x_2\right|\)
cho phương trình \(x^2-2\left(m+3\right)x+m+1=0\) (1) . Gọi \(x_1\),\(x_2\) là các nghiệm dương của phương trình (1). Tìm GTNN của \(P=\left|\dfrac{1}{\sqrt{x_1}}-\dfrac{1}{\sqrt{x_2}}\right|\)
\(\text{Cho phương trình: x^2-2(m+1)x+3m-3=0 ( x là ẩn, m là tham số)}\)
\(\text{Tìm m để phương trình có hai nghiệm x_1,x_2 phân biệt sao cho}\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=4\)
Giải hộ mình với ạ
Cho phương trình x2-2x+m+2=0 ( m là tham số). Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn: \(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
Gấp! Mọi người giúp mình nha!!!
Gọi x1, x2 là nghiệm của phương trình x2+2x-4=0. Hãy lập phương trình bậc hai có 2 nghiệm là:
a) x1+2 và x2+2
b) \(\dfrac{1}{x_1+1}\) và \(\dfrac{1}{x_2+1}\)
c) \(\dfrac{x_1}{x_2}\)và \(\dfrac{x_2}{x_1}\)
d) \(x^2_1\)+\(x^2_2\) và \(x_1\)+\(x_2\)
Mọi người giúp mình với. Cần gấp trước 19h15 hôm nay, mình cảm ơn trước ạ.
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Cho phương trình: \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) mà biểu thức M=\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt giá trị nhỏ nhất.
Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(-2< x_1< x_2< 2\)
Tìm hệ thức liên hệ giữa x1 và x2 không chứa m
Cho phương trình \(x^2-\left(n-2\right)x-3\) ( n là tham số). Chứng minh phương trình luôn có hai nghiệm \(x_1;x_2\) với mọi n. Tìm n để các nghiệm thoả mãn hệ thức:
\(\sqrt{x^2_1+2018}-x_1=\sqrt{x^2_2+2018}+x_2\)