Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Nguyễn Ngọc Trí

Cho phương trình x2 -(m+1)x +m-5=0

Xác định giá trị của m để phương trình có 2 nghiệm x1, x2 thõa mãn \(\left\{{}\begin{matrix}x_1-x_2=4\\x^3_1-x_2^3=32\end{matrix}\right.\)

tran nguyen bao quan
26 tháng 4 2019 lúc 19:30

Ta có

\(=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m-5\right)=m^2+2m+1-4m+20=m^2-2m+21>0\)Vậy phương trình luôn có 2 nghiệm \(x_1,x_2\) phân biệt

Theo định lí Vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{m+1}{1}=m+1\\x_1x_2=\frac{c}{a}=\frac{m-5}{1}=m-5\end{matrix}\right.\)

Ta lại có \(x_1^3-x_2^3=32\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=32\Leftrightarrow4.\left(x_1^2+2x_1x_2+x_2^2-x_1x_2\right)=32\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=8\Leftrightarrow\left(m+1\right)^2-\left(m-5\right)=8\Leftrightarrow m^2+2m+1-m+5-8=0\Leftrightarrow m^2+m-2=0\Leftrightarrow\left(m-1\right)\left(m+2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

Vậy m=1 hoặc m=-2 thì phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1-x_2=4\\x_1^3-x_2^3=32\end{matrix}\right.\)


Các câu hỏi tương tự
Hải Yến Lê
Xem chi tiết
KYAN Gaming
Xem chi tiết
Ymzk
Xem chi tiết
KYAN Gaming
Xem chi tiết
Nguyên
Xem chi tiết
Hera
Xem chi tiết
Chii Phương
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
Limited Edition
Xem chi tiết